
A System for Centralized ABAC Policy Administration and
Local ABAC Policy Decision and Enforcement in Host

Systems using Access Control Lists*

 David Ferraiolo Serban Gavrila
 National Institute of Standards and Technology National Institute of Standards and Technology
 Gaithersburg, Maryland 20899 Gaithersburg, Maryland 20899
 USA USA
 dferraiolo@nist.gov serban.gavrila@nist.gov

 Gopi Katwala
 National Institute of Standards and Technology
 Gaithersburg, Maryland 20899
 USA
 gopi.katwala@nist.gov

ABSTRACT
We describe a method that centrally manages Attribute-Based
Access Control (ABAC) policies and locally computes and
enforces decisions regarding those policies for protection of
resource repositories in host systems using their native Access
Control List (ACL) mechanisms. The method is founded on the
expression of an ABAC policy that conforms to the access
control rules of an enterprise and leverages the ABAC policy
expression by introducing representations of local host
repositories into the ABAC policy expression as objects or
object attributes. Repositories may be comprised of individual
files, directories, or other resources that require protection.
The method further maintains a correspondence between the
ABAC representations and repositories in local host systems.
The method also leverages an ability to conduct policy analytics
in such a way as to formulate ACLs for those representations in
accordance with the ABAC policy and create ACLs on
repositories using the ACLs of their corresponding
representations. As the ABAC policy configuration changes, the
method updates the ACLs on affected representations and
automatically updates corresponding ACLs on local
repositories. Operationally, users attempt to access resources
in local host systems, and the ABAC policy is enforced in those
systems in terms of their native ACLs.

*The U.S. Government has filed a patent application of certain aspects of the
subject matter disclosed in this paper.

Products may be identified in this document, but identification does not imply
recommendation or endorsement by NIST, nor that the products identified are
necessarily the best available for the purpose.

This paper is authored by an employee(s) of the United States Government and
is in the public domain. Non-exclusive copying or redistribution is allowed,
provided that the article citation is given and the authors and agency are clearly
identified as its source.

ABAC'18, March 19–21, 2018, Tempe, AZ, USA
ACM 978-1-4503-5633-6/18/03
https://doi.org/10.1145/3180457.3180460

ACM Reference Format:
David Ferraiolo, Serban Gavrile and Gopi Katwala. 2018. A System for
Centralized ABAC Policy Administration and Local ABAC Policy
Decision and Enforcement in Host Systems using Access Control Lists.
In Proceedings of 3rd Workshop on Attribute Based Access Control
(ABAC’18). ACM, Tempe, AZ, USA, 8 pages, March.
DOI: 10.1145/3180457.3180460

KEYWORDS
ABAC; Attribute Based Access Control; ACLs; Access Control
Lists; NGAC; Next Generation Access Control; Architecture;
Authorization; Policy Machine

1. INTRODUCTION AND BACKGROUND
We describe a method for the enforcement of Attribute Based
Access Control (ABAC) policies in host systems using their
Access Control Lists (ACLs). The method centrally manages
ABAC policies using a Policy and Attribute Administrative Point
and a database for storing attributes and policy information in
what we refer to as the Minimum ABAC implementation.

The Minimum ABAC implementation also includes a Policy
Analytics Engine, that computes Access Control Lists (ACLs) in
terms of local host repositories that are represented as ABAC
objects or object attributes. As a consequence of the method,
ABAC policies are enforced over user access requests to
resource repositories in local host systems in terms of their
ACLs.

An ACL is a simple mechanism that dates back to the early
1970s and remains in widespread use to protect resource
repositories of varying types (e.g., files and directories). Each
resource repository is associated with an ACL that stores the
users and their approved access rights for the repository. The
list is checked by the access control system to determine if
access is granted or denied. Lists need not be excessively long
if groups of users with common access rights to the repository
(rather than individual members) are attached.

The principal advantages of ACL mechanisms are that they
are extremely efficient when computing access decisions and

mailto:dferraiolo@nist.gov
mailto:serban.gavrila@nist.gov
https://doi.org/10.1145/3180457.3180460
https://doi.org/10.1145/3180457.3180460

help simplify the review of users’ access rights to a repository.
Another advantage is that they allow access to a repository to
be easily revoked by simply deleting an ACL entry, or deleting
a user or group membership of an ACL entry. However, because
ACLs make it difficult to determine the access rights users have
to repositories, ACLs are cumbersome when managing access
capabilities of users.

Attribute-Based Access Control (ABAC) represents the
latest milestone in the evolution of authorization approaches
[1]. ABAC is an access control method wherein user requests to
perform operations on resources are granted or denied based
on the assigned attributes of the user, the assigned attributes
of the resource, and a set of policies that are specified in terms
of those attributes.

A key ABAC advantage is how easily it manages policy.
When a user enters on duty or when a user’s job function,
authority, affiliations, or any other user characteristic changes,
an administrator simply assigns/reassigns the user to the
appropriate attributes, and the user automatically gains
appropriate access capabilities to system resources. Similarly,
when a resource is created or different accesses to a resource
are required, appropriate object attribute assignments are
created/deleted, automatically enabling policy-preserving
user access rights to the resource.

ABAC implementations typically include four layers of
functional decomposition working together to bring about
policy-preserving access control: Enforcement, Decision,
Access Control Data, and Administration. Among these
components is a Policy Enforcement Point (PEP) that traps
access requests and enforces policy. To determine whether to
grant or deny access, the PEP submits the request to a Policy
Decision Point (PDP). The PDP computes and returns a decision
to the PEP based on policy and attribute information stored in
one or more databases (access control data). Information is
managed in the policy and attribute store through an ABAC
system administrative API.

There are currently two standards [2] that address these
ABAC features: Extensible Access Control Markup Language
(XACML) [3] and Next Generation Access Control (NGAC) [4, 5,
6]. For both standards, there exist open-source and
commercial-compliant implementations. While these
implementations deliver ABAC’s administrative advantages,
not all ABAC implementations enable efficient policy
analytics—the ability to answer key questions regarding the
access state.

In many ways, the method offers the best of both ABAC and
ACLs. By leveraging an ABAC implementation, the method
provides a means of access control policy support that goes
beyond what is feasible through direct management of ACLs.
For instance, enforced policies may combine privileges of sub-
policies (e.g., discretionary access control and role-based
access control) and may consider denials for expressing
privilege exceptions to sub-policies. By expressing policies in
terms of combinations of user attributes, the method requires
the creation and management of fewer attributes than the
number of otherwise required groups. By conducting policy
enforcement and decision-making using ACLs, the method
provides enhanced performance in granting or denying user
access requests beyond what is possible using an ABAC system
alone. This enhanced performance is not only desirable in
applications that manually access system resources on an
individual basis, but is absolutely essential in such
environments as big data processing and supercomputing, that

require batch processing. Although ACLs preclude the ability to
answer important policy review questions, the method allows
the full breadth of policy analytics that is permissible to ABAC
in general including the identification of the access capabilities
of a user. Perhaps most appealing, the method achieves
enforcement of ABAC policies in local host systems with
minimal or no required changes to those systems beyond
implementation of agent software.

2. MINIMUM ABAC REQUIREMENTS
The method of central management of ABAC policies and local
enforcement of those ABAC policies through ACLs on local host
repositories is dependent on an efficient means of conducting
policy analytics in an ABAC system. Determining what group of
users can access a resource with an access right (e.g., read or
write) is especially crucial. The open source implementation,
Harmonia 1.6, is an NGAC reference implementation on GitHub
that exemplifies an ABAC implementation with the capability
to efficiently conduct policy analytics [7]. Annex A of [6]
describes, in detail, a linear-time algorithm to calculate the
access rights a user has to objects representing protected
resources based on the work published in [8]. The algorithm
can also be easily adapted to make various other key policy
determinations such as identifying the access rights a group of
users have to protected resources.

Although a PEP and PDP are normally included in an ABAC
implementation, the method does not depend on these
components since the functions of enforcing ABAC policy and
computing decisions are achieved by the local host’s ACL
mechanism. What is required of the ABAC system, in addition
to conducting policy analytics, is the ability to administer and
store policies and attributes. We generally refer to this
administrative component as the Policy and Attribute
Administrative Point, although XACML does not prescribe a
means of managing its attributes.

3. METHOD
The method for centralized ABAC policy management and local
host enforcement of ABAC policies using native host ACLs
includes the following steps:

• Expressing an ABAC policy that defines privileges, or
privileges and prohibitions, of users using a policy and
attribute administration point for configuring the
authorization data of a centralized ABAC system that, in
part, defines policies in terms of objects and object
attributes;

• Introducing representations of resource repositories
needing protection in local systems that protect their data
using ACLs into the ABAC policy expression as objects or
object attributes;

• Establishing a one-to-one correspondence between the
representations of resource repositories and actual
resource repositories;

• Formulating ACLs for representations in accordance with
the ABAC policy by determining the group of users that can
exercise the access right for each access right (e.g., read,
write) relevant for a representation r;

• Creating a group on the local system with user members
for each determined group and hosting the resource
repository corresponding to representation r, using agent
software;

• Creating a user account, if one does not yet exist, for each
user member of each created group on the local system
hosting the resource repository corresponding to
representation r, using agent software;

• Creating an ACL on the resource repository corresponding
to representation r, using the ACL formulated for
representation r and agent software;

• When required, altering the expression of ABAC policy
using the policy and attribute administration point of the
centralized ABAC system and mandating the update of
ACLs of each representation affected by the alteration;

• Updating group memberships, user accounts, and ACLs on
local systems with resource repositories that correspond
to affected representations using agent software.

Although the method could be implemented in different
ways, Figure 1 illustrates a preferred approach that includes a
Control Center surrounded on three sides by an Administrator,
a Minimum ABAC implementation, and a local Host System.

Figure 1: A preferred architecture of method

Administrators express ABAC policies, introduce
representations of local repositories into the policy expression,
and instruct the creation of ACLs for repositories as
administrative commands using the administrative API of the
ABAC Control Center. The Control Center provides status and
resulting information in reply to administrative commands.
The Minimum ABAC Implementation consists of a Policy and
Attribute Administrative Point, a Policy Analytics Engine, and a
database for storing ABAC Policies and Attributes. In addition,
the method may store correspondences between repositories
and representations in the database.

The Control Center, through the Policy and Attribute
Administrative Point, creates and manages ABAC policies and
attributes that are stored in computer memory and/or on disk
referred to here as the database. The Control Center issues
commands to the Policy and Attribute Administrative Point for
managing attributes and policies. The Policy and Attribute
Administrative Point implements administrative routines that,
when executed, create and delete information stored in the
database. These administrative routines may pertain to
viewing or reading database information, which would be
returned to the Control Center.

The Host System normally implements a File System
comprised of repositories of files and directories and normally
maintains an access control system with data comprising ACLs,

groups, and user identities. In addition to these native
components, the method implements Agent software on the
Host System with administrative privileges for identifying and
viewing repositories and creating, deleting, and updating
groups, user identities, and ACLs for repositories. The main
function of Agent software is to translate centralized Control
Center administrative commands to native host administrative
commands. Although the commands issued to Agent software
by the Control Center may be uniform across a variety of Host
Systems, Agent software on Host Systems are specific to the
ACL, group, and user semantics of a host and, in this case, Host
i. Agent software response to the Control Center may be
uniform across Host Systems. Agent commands to the File
System and commands to the host access control system are
host-specific. Similarly, status and data returned to the Agent
from the File System and access control system status
information returned to the Agent are also host-specific.

The Control Center, through Agent software identifies
repositories requiring protection in the File System, creates a
representation of each such repository as either an object or an
object attribute in the ABAC Policy using the Policy and
Attribute Administrative Point, and creates a correspondence
between the representation and repository in the database.

The Control Center, through the Policy Analytics Engine,
computes ACLs with required groups for representations in
accordance with ABAC Policies and Attributes stored in the
database and subsequently creates ACLs for corresponding
repositories, creates groups, and, if necessary, creates user
identities in the host access control system using host agent
software. To complete this function, the Control Center passes
a representation (an object or object attribute) to the Policy
Analytics Engine, which then issues read commands to the
database resulting in the returns of requested ABAC policy and
attribute data. Once the Policy Analytics Engine computes an
ACL with required groups, that information is passed back to
the Control Center.

The Control Center, through the Policy and Attribute
Administrative Point, may update ABAC policies and/or
attributes stored in the database. In such cases, the Control
Center instructs the Policy Analytics Engine to re-compute
ACLs and Groups for affected representations. Using Agent
software, ACLs are updated for corresponding repositories,
groups, and, if necessary, creates/deletes user identities in the
host access control system.

The Policy and Attribute Administrative Point and Policy
Analytics Engine could be built as modules of the Control
Center on the same machine. The database could be hosted on
that machine, or these components could reside as
independent network components. Although portrayed as a
single store, the attributes and policies may physically reside in
different stores. In the case that the method provides ABAC
support to a single host system, the Control Center, the entire
Minimum ABAC Implementation, and the Agent could reside on
that host system.

4. ILLUSTRATIVE EXAMPLE
Figure 2 illustrates an example directory structure of a file
system on a host system owned by a Bank to serve as a running
use case to highlight the features of the method. The structure
includes a root directory (“Products”) with two subdirectories
(“loans” and “accounts”), each with subdirectories (e.g., loans 2
and accounts 1) for storing and organizing loan and account

products as files and with respect to the branches of the bank.
For instance, loans 2 maintains loan files belonging to branch
2.

Although ACL features for protecting resource repositories
can vary from system to system and different terminology is
sometimes used to express the same feature, we identify
semantics common to most if not all ACL mechanisms.

• ACLs on directories are treated differently than ACLs on
files.

• Read on a directory implies the right to list children of
the directory.

• Write on a directory implies the right to create/delete
children of the directory.

• Read and write on a file implies the same right.
• ACLs on a directory or file can inherit or block ACLs of

parent directories.

Figure 2: Example directory structure

In addition to the directory structure illustrated in Figure 2, we
assume these ACL semantics for the purposes of our illustrative
example.

4.1 ABAC Policy Expression
The method begins with the creation of an ABAC policy using
the Policy and Attribute Administrative Point of an ABAC
implementation. Figure 3 is an illustration of an example bank
policy in terms of NGAC policy elements and relations wherein
users (e.g., u1, u2) and user attributes (e.g., Teller, Branch1) are
shown on the left side of the graph, and object attributes (e.g.,
Accounts 1 and Loans) and objects (e.g., loan-1, o2) are on the
right side. The arrows denote assignments and imply a
containment relation (e.g., loan-1 is contained in loans 2, Loans,
Br2 Products, Products, and RBAC). The policy takes into
consideration two sub-policies referred to by NGAC as policy
classes: RBAC and BranchAccess.

Access rights to perform operations are acquired through
associations. The dashed lines illustrate association relations.
By ua---ars---oa, we denote an association where ua is a user
attribute, ars is a set of resource and/or administrative access
rights, and oa is an object attribute1. The ars depicted in Figure
3, pertain to both resource access rights and administrative
access rights. The r and w are read and write, resource access

1 For the purposes of this paper, we specify an association
using a simpler notation than formally specified in the NGAC
standard.

rights, and c-ooa and d-ooa are administrative access rights for
“creating an object in object attribute” and “deleting an object
in object attribute.” The meaning of an association ua---ars---oa
is that the users contained in ua can execute the access rights
in ars on the policy elements referenced by oa. The set of policy
elements referenced by oa is dependent on (and meaningful to)
the access rights in ars. For instance, the association Loan
Officer---{r, w, c-ooa, d-ooa}---Loans pertains to capabilities to
read and write objects (representing files) contained in Loans
(i.e, o2 and loan-1) and create and delete object assignments (a
type of relation) in Loans, Loans 1, and Loans 2.

Figure 3: Example policy configuration

Collectively, associations and assignments indirectly
specify privileges with respect to policy classes of the form (u,
ar, e), with the meaning that user u is permitted (or has a
capability) to execute the access right ar on element e, where e
can represent an object attribute or object.

NGAC includes an algorithm for determining privileges
with respect to one or more policy classes and associations.
Specifically, (u, ar, e) is a privilege if and only if, for each policy
class pc in which e is contained, the following is true:

1. The user u is contained by the user attribute of an
association;

2. The element e is contained by the attribute at of that
association;

3. The attribute at of that association is contained by the
policy class pc; and

4. The access right ar is a member of the access right set of
that association.

Table 1 lists the derived privileges for the policy configuration
depicted in Figure 3.

Table 1. List of derived privileges for Figure 2
(u1, r, o1), (u1, w, o1), (u2, r, o2), (u2, w, o2), (u2, r, loan-1),
(u2, w, loan-1), (u3, r, o2), (u3, w, o2), (u3, r, loan-1), (u3,
w, loan-1), (u1, c-ooa, Accounts 1), (u1, d-ooa, Accounts 1),
(u2, c-ooa, Loans 1), (u2, d-ooa, Loans 1), (u3, c-ooa, Loans
2), (u3, d-ooa, Loans 2), (u4, r, o1), (u4, r, o2), (u4, r, o3),
(u4, r, loan-1)

In addition to assignments and associations, NGAC includes
prohibitions or deny relations. In general, deny relations
specify privilege exceptions. Among these prohibitions is a
user-based deny, denote by, u_deny(u, ars, pe), where u is a
user, ars is an access right set, and pe is a policy element used
as a reference for itself and the policy elements contained by
the policy element. The meaning is that user u cannot execute
access rights in ars on policy elements in pe. User-deny
relations can be created by an administrator. An administrator,
for example, might impose a condition wherein no user is able
to alter their own loan file, even if the user is assigned to Loan
Officer with capabilities to read/write all Loans. The u-deny
relation depicted in Figure 3, prohibits u2 from writing to loan-
1. This privilege exception is reflected in Table 1 using red font.

A natural language description of the policy expressed by
Figure 3 is as follows:

• Tellers can read and write accounts objects in all branches.
• Tellers can create and delete accounts objects in the

branches for which they are assigned.
• Loan Officers can read and write loans objects in all

branches.
• User u3 (a Loan Officer) cannot write to Loan-1.
• Loan Officers can create and delete loans objects in the

branches to which they are assigned.
• An Auditor can read account and loan products in all

branches.

4.2 Creating ACLs for Representations
The method leverages an ABAC policy expression by
introducing representations of host repositories as either an
object attribute in the case of a directory or an object in the case
of a file. The method further maintains a correspondence
between the ABAC representations of the repository and the
actual repository in host systems. In Figure 3, Accounts 1,
Loans 1, Loans 2, Accounts, Loans, Products, and loan-1 are
in bold to indicate that they represent host system repositories
in the directory structure depicted in Figure 2.

Figure 4 illustrates an establishment of a correspondence
between Loans 2 in the ABAC configuration and loans 2 in the
directory structure of the local host file system.

Figure 4: Correspondence between the representation of
Loans 2 in the ABAC system and loans 2 in the local host
File System.

Once a representation has been established, the method
conducts a policy review in such a way as to formulate an ACL
for the representation in accordance with the ABAC policy. A
central aspect of the policy review involves determining the
group of users who can perform specific operations (e.g., read
and write) on the representation or on an object contained in
the representation. Since the meaning of an ACL differs for
directories and files, the logic of the Policy Analytics Engine
may make a distinction between representations of files,
directories containing files, and directories that do not contain

files. For the purposes of this paper we assume a Policy
Analytics Engine that makes such a distinction. In describing its
logic, we use the notion of a “Custom” ACL to indicate the
blocking of ACL privilege inheritance of parent directories.

Let us consider loan-1, a representation of the file loan-1.
To read loan-1 a user needs to be assigned to Loan Officer or
Auditor. The group of users that meet this criterion are u2, u3,
and u4. To write loan-1 a user needs to be assigned to Loan
Officer. The group of users that meet this criterion are u2 and
u3. However, in accordance with the overall policy, u2 is denied
the ability to write to loan-1, and, as such, user u2 is not
included in the group for writing. Any convention can be used
for naming groups. In our example, we will use gr1 for the
group that can read and gr2 for the group that can write to
loan-1 in deriving an ACL for loan-1:

 loan-1: Custom
 gr1, r; gr2, w -- where gr1=u2, u3, u4, and gr2=u3

The ACL is designated as “Custom” to indicate that it does
not inherit access rights from its parent directory (loans 2). In
the case of a representation of a directory containing files, the
logic creates a custom ACL for the directory and an ACL for
inheritance by the files (the directory’s children). While
establishing correspondence with a directory repository that
contains files, the logic also creates an arbitrary-unique object
and assigns that object to the repositories representation if no
object is currently assigned to the representation. The red
object to object-attribute assignments in Figure 3 illustrates
such an assignment. To read an object in Loans 2 under the
policy of Figure 3, a user needs to be assigned to Loan Officer
or Auditor. We will refer to the group of users that meet this
criterion as gr3. To write to an object in Loans 2, a user needs
to be assigned to Loan Officer. We refer to that group of users
as gr4. Now, let us consider the groups that can list and
create/delete the children of Loans 2.

In general, a user needs to have permissions to list children
for all directories along the path to a file for which they have
read access. In the case of a representation of a directory of any
type, this group would correspond to the users with read
access to an object contained in the representation. In the case
of Loans 2, that is gr3.

Now, let us consider the group of users that can
create/delete children. This group of users would correspond
to the users that can create/delete objects in Loans 2. In
accordance with the policy, these users would be required to
be assigned to both Loan Officer and Branch 2, namely u3.
Given that read on a directory implies list and write on a
directory implies create/delete children, we can derive the
follow ACL for Loans 2.

 Loans 2: Custom
 file (inherit) – gr3, r; gr4, w
 directory – gr3, r (list); gr5, w (create/delete children)
 -- where gr3=u2, u3, u4; gr4=u2, u3; and gr5=u3

Because file level permissions apply to children (files) of
the directory, ACL file inheritance is specified. Again, due to its
designation as “Custom,” this ACL file inheritance is blocked for
loan-1, enabling the preservation of u2’s denial to write to
loan-1. Using the same approach used for Loans 2, an ACL can
be created for Loans 1 and Accounts 1 that also contain files:

 Loans 1: Custom
 file (inherit) – gr6, r; gr7, w
 directory – gr6, r (list); gr8, w (create/delete children)
 -- where gr6=u2, u3, u4; gr7=u2, u3; gr8=u2

 Accounts 1: Custom
 file (inherit) – gr9, r; gr10, w
 directory – gr9, r (list); gr11, w (create/delete
 children)
 -- where gr9=u1, u4; gr10=u1; gr11=u1

Now, let us consider representations of directory
repositories that do not contain files. For these
representations, a read (list) ACL is required. Given a user
needs to have permissions to list children for all directories
along the path to a file for which they have read access, the
Policy Analytic Engine could simply identify the users who can
read an object contained in the representation. Applying this
approach to Loans, Accounts, and Products, we formulate
their ACLs:

 Loans: Custom
 directory – gr12, r (list) --
 where gr12=u2, u3, u4

 Accounts: Custom
 directory – gr13, r (list) --
 where gr13=u1, u4

 Products: Custom
 directory – gr14, r (list) --
 where gr14=u1, u2, u3, u4

4.3 Creating Host Access Control Data
The method further creates corresponding group(s) as well as
user account(s) and an ACL on the local host repositories using
the computed group and the ACL of the corresponding
representation. Figure 5 depicts the creation of such access
control information on a local host system regarding loan-1.

Figure 5: Creation of accounts, groups, and ACLs in local
host access control system corresponding to loan-1.

Subsequently to creation of access control information
pertaining to loans-1 the method could create access control
information pertaining to Loans 2, as shown in Figure 6.

Figure 6: Creation of accounts, groups, and ACLs in local
host access control system corresponding to Loans 2.

4.4 Updating Host Access Control Information
As the ABAC policy changes, the method updates appropriate
accounts, groups, and ACLs pertaining to affected
representations and automatically updates ACLs on
corresponding local repositories. Consider the update of the ABAC
policy of Figure 3 as indicated in Figure 7.

Figure 7: Updating ABAC policy.

Under the updated policy, user u3 has been deleted and
replaced by user u5, a new Loan Officer in Branch 2. Loans 2 is
affected by this policy change, and consequently, the logic
automatically updates the access control data of the local host
access control system as illustrated in Figure 8.

Figure 8: Local changes to the user accounts, groups, and
ACLs in correspondence to the updated ABAC policy of
Figure 4

5. SYSTEM OPERATION
Operationally, administrators express ABAC policies,
introduce representations of local repositories into the policy
expression, and instruct the creation of ACLs for repositories
through the administrative API of the ABAC Control Center.

Host users attempt to access repositories in local host
systems as they normally would, and ABAC policies are
enforced in those systems in terms of host ACLs managed by
the method. Although the examples used to describe the
method pertain to a single local host, the method allows for
the centralized management of ACLs in multiple hosts, each
within an independent administrative domain as shown in
Figure 9.

Figure 98: Centralized ABAC policy management and local
decision-making and enforcement across multiple
security domains

Because of this use of ACLs, access decisions are computed
and policy is enforced with an efficiency far superior to an
ABAC system that includes PEP and PDP components.

6. RELATED WORK
The method described in this paper is not the only system used
for the centralized management of ACLs. In fact, an entire class
of products exist, referred to as Enterprise Security

Management Systems (ESMSs), which are used for centralized
management of authorizations for resources resident in host
systems and distributed throughout the enterprise. A common
abstraction used by these systems is that of roles and RBAC in
general [9, 10]. For instance, roles stored and managed in a
directory are used to formulate groups used on ACLs or create
ACLs in accordance with role membership and permissions
directly associated with roles. The Role Control Center (RCC)
[11] is a robust implementation that makes use of much of the
entire RBAC abstraction. RCC supports an ESMS model with
general role hierarchies, static separation of duty constraints,
and an advanced permission review facility (as defined in
NIST’s proposed RBAC standard [12]). The RCC server is
responsible for mapping selected subgraphs of the role graph
(called views) to user accounts and groups on heterogeneous
hosts as well as for mapping abstract objects and role
permissions to actual objects and permission structures (e.g.,
ACLs) on those hosts. For these tasks, RCC, like our method,
uses agent software running on each host to create/delete
groups and user accounts, populate the groups with user
accounts, and set up ACLs according to commands received
from the RCC server. Consequently, RBAC policies are enforced
using host ACL mechanisms.

Although there are architectural similarities with RCC and
other ESMS products, the method described in this paper is the
first to achieve enforcement of ABAC policies using host ACL
mechanisms. The enforced policies are based on combinations
of user attributes (including but not limited to roles) and object
attributes. The ACLs that enforce policy are arrived at not
through one-to-one mapping of roles to groups or role
permissions to ACLs, but through policy analytics. In particular,
the method is based on the determination of a group of users
that can access an object or an object in an object attribute with
an access right (e.g., read or write) where the source of the
group may pertain to a multitude of user attributes.

7. CONCLUSION AND FUTURE WORK
The method described in this paper enables centralized
management of ABAC policies for resources repositories
distributed throughout an enterprise using host ACLs. It
includes a centralized Control Center surrounded by an
Administrator, a Minimum ABAC implementation, and Local
Host Systems. Administrators express ABAC policies, introduce
representations of local repositories into the policy expression,
and instruct the creation of ACLs for repositories as
administrative commands using the administrative API of the
Control Center. The Minimum ABAC Implementation consists
of a Policy and Attribute Administrative Point, Policy Analytics
Engine, and database for storing ABAC Policies and Attributes.
The Control Center maps the authorization data to the various
host system ACL mechanisms using the Policy Analytics Engine,
through agent software implemented on the host systems. The
Control Center, through the Policy and Attribute
Administrative Point, may update ABAC policies and/or
attributes stored in the database. In such cases, the Control
Center instructs the Policy Analytics Engine to re-compute
ACLs for affected representations. Using Agent software, ACLs
are updated for corresponding repositories in their host access
control systems. Operationally, users attempt to access
resources in local host systems, and the ABAC policy is
enforced in those systems in terms of their ACLs.

All components of the Minimum ABAC implementation are

available as open source. As such, given ABAC policy decision
and enforcement are conducted using native host ACL
mechanisms, the only components necessary for
implementation of the method are the Control Center and host-
agent software.

To date we have conducted a variety of experiments to
demonstrate the viability of the method, to include
development of agent software for the Windows operating
system. We plan on development of agent software for other
operating environments along with the development of a
Control Center component. In addition, we are using a subset
of the components available by Harmonia 1.6 to meet the
requirements of the Minimum ABAC implementation.

8. REFERENCES
[1] V.C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R.

Miller, and K. Scarfone, Guide to Attribute Based Access
Control (ABAC) Definition and Considerations, National
Institute of Standards and Technology (NIST) Special
Publication (SP) 800-162, January 2014.
http://dx.doi.org/10.6028/NIST.SP.800-162

[2] D. F. Ferraiolo, R. Chandramouli, V. Hu, and R. Kuhn,
National Institute of Standards and Technology DRAFT
(NIST) SP-800-178, A Comparison of Attribute Based
Access Control (ABAC) Standards for Data Services,
October 2016. http://dx.doi.org/10.6028/NIST.SP.800-
178

[3] The eXtensible Access Control Markup Language
(XACML), Version 3.0, OASIS Standard, January 22, 2013.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.pdf

[4] NICITS 499 – Information technology – Next Generation
Access Control - Functional Architecture (NGAC-FA),
INCITS 499-2013, American National Standard for
Information Technology, American National Standards
Institute, March 2013.

[5] INCITS 526 – Information technology – Next Generation
Access Control – Generic Operations and Data Structures,
INCITS 526-2016, American National Standard for
Information Technology, American National Standards
Institute, 2016.

[6] NICITS 525 – Information technology – Next Generation
Access Control - Implementation Requirements,
Protocols and API Definitions (NGAC-IRPADS), in initial
public review (December 1, 2017 to January 30, 2018).

[7] NIST Policy Machine Versions 1.5 and 1.6 - Harmonia
[Website].

[8] Peter Mell, James Shook, Richard Harang and Serban
Gavrila, Linear Time Algorithms to Restrict Insider Access
using Multi-Policy Access Control Systems, Journal of
Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, vol. 8, num. 1, March 2017, pp.
4-25, URL: http://isyou.info/jowua/papers/jowua-v8n1-
1.pdf.

[9] Enterprise Security Architecture using IBM Tivoli
Security Solutions (2002) – IBM Corporation

[10] Enterprise Security Station – User Guide (Windows GUI)
– BMC Software Inc., 2002.

[11] Ferraiolo D, Chandramouli R, Ahn GJ, Gavrila SI (2003)
The role control center: features and case studies. Proc. of
the 8th ACM symposium on access control models and
technologies, Como, Italy, pp12–20, June.

[12] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R.
Chandramouli, Proposed NIST standard for role-based
access control, ACM Transactions on Information and
Systems Security 4 (3) (2001).

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://isyou.info/jowua/papers/jowua-v8n1-1.pdf
http://isyou.info/jowua/papers/jowua-v8n1-1.pdf

	Word Bookmarks
	Ref_ANSI04
	Ref_ANSI13
	Ref_Bell76
	Ref_DoD85
	Ref_Fer05
	Ref_Fer11
	Ref_Fer14a
	Ref_Fer14b

