

Poster: What Proportion of Vulnerabilities can be
Attributed to Ordinary Coding Errors?

Rick Kuhn1, Mohammad Raunak2, Raghu Kacker1

kuhn@nist.gov, raghu.kacker@nist.gov raunak@loyola.edu
1National Institute of Standards and Technology 2Loyola University Maryland

I. INTRODUCTION

The analysis reported in this poster developed from
questions that arose in discussions of the Reducing
Software Vulnerabilities working group, sponsored by the
White House Office of Science and Technology Policy in
2016 [1]. The key question we sought to address is the
degree to which vulnerabilities arise from ordinary
program errors, which may be detected in code reviews
and functional testing, rather than post-release.

 The analysis used 2008 - 2016 data from the US
National Vulnerability Database (NVD) [2]. NVD is the
US government's repository of information system
security vulnerabilities, which compiles nearly all
publicly reported vulnerabilities using the Common
Vulnerabilities and Exposures (CVE) dictionary [3]. Each
reported CVE is assigned to one or more categories called
the Common Weakness Enumeration (CWE) [4], which
specifies categories that may include a number of
subsidiary weaknesses. For example, CWE-119, Buffer
errors, includes 14 subsidiary CWEs, such as out of
bounds read (CWE-125), and untrusted pointer
dereference (CWE-822).

 We further grouped the NVD CWE categories into
primary classes of Configuration, Design, and
Implementation errors. In determining the class of each
CWE category, we considered the common errors in each
type. Configuration vulnerabilities result when a system
is not set up correctly with respect to security goals. A
simple example would be failure to enable password
checking. Design related vulnerabilities are those that
originate in the planning and design of the system, such
as selecting an outdated or weak cryptographic algorithm.
Implementation errors occur in program construction.
One of the most common implementation vulnerabilities
is simple buffer overflow. Failure to check that input size
is within maximum buffer size is a simple error that
should almost never occur, but continues to be a
widespread problem. A wide variety of implementation
related vulnerabilities also result from failure to properly
validate input.

II. ANALYSIS AND RESULTS

The poster includes analysis of the following data [5]:

• Severity trends - proportion of vulnerabilities
designated low, medium, and high by year.

• Primary CWE type trends - direction of trend for 19

primary CWE types, further classed as Configuration,
Design, or Implementation vulnerabilities.

Significant findings include:

• The proportion of high severity vulnerabilities trends
downward, declining about 15 percentage points since
2008. About two-thirds of this fraction has shifted to
medium severity vulnerabilities.

• Implementation or coding errors account for roughly
two thirds of the total. We consider the proportion of
implementation vulnerabilities, rather than absolute
numbers, because the number of vulnerabilities is
partially a function of the number of applications
released, which has increased over time. The
proportion of implementation vulnerabilities for 2008-
2016 is close to the 64% reported for 1998 - 2003 in
an analysis of an early version of NVD [6].

 The high proportion of implementation errors suggests
that little progress has been made in reducing these
vulnerabilities that result from simple mistakes, but also
that more extensive use of static analysis tools, code
reviews, and testing could lead to signficant
improvement. The poster also briefly summarizes data on
effectiveness of approaches to preventing and detecting
errors before release.

Products may be identified in this document, but such identification does
not imply recommendation by the US National Institute of Standards and
Technology or the US Government, nor that the products identified are
necessarily the best available for the purpose.

[1] Black, P. E., Badger, M. L., Guttman, B., & Fong, E. N. (2016).

Dramatically Reducing Software Vulnerabilities: Report to the
White House Office of Science and Technology Policy. NIST
Interagency Report, NISTIR-8151.

[2] National Vulnerability Database, http://nvd.nist.gov 2017
[3] Common Vulnerabilities and Exposures, https://cve.mitre.org.
[4] Common Weakness Enumeration, https://cwe.mitre.org.
[5] Kuhn, D. R., Raunak, M. S., & Kacker, R. (2017, July). An

Analysis of Vulnerability Trends, 2008-2016. Software Quality,
Reliability and Security (QRS-C), 2017 IEEE International
Conference on (pp. 587-588).

[6] Heffley, Jon, and Pascal Meunier. "Can source code auditing
software identify common vulnerabilities and be used to evaluate
software security?" System Sciences, 37th Annual Hawaii Intl
Conf, IEEE, 2004.

