
H. Roßnagel et al. (Eds.) (Hrsg.): Open Identity Summit 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Smart Contract Federated Identity Management without
Third Party Authentication Services

Peter Mell1, Jim Dray2 and James Shook3

Abstract: Federated identity management enables users to access multiple systems using a single
login credential. However, to achieve this a complex privacy compromising authentication has to
occur between the user, relying party (RP) (e.g., a business), and a credential service provider (CSP)
that performs the authentication. In this work, we use a smart contract on a blockchain to enable an
architecture where authentication no longer involves the CSP. Authentication is performed solely
through user to RP communications (eliminating fees and enhancing privacy). No third party needs to
be contacted, not even the smart contract. No public key infrastructure (PKI) needs to be maintained.
And no revocation lists need to be checked. In contrast to competing smart contract approaches, ours
is hierarchically managed (like a PKI) enabling better validation of attribute providers and making it
more useful for large entities to provide identity services for their constituents (e.g., a government)
while still enabling users to maintain a level of self-sovereignty.

Keywords: federated identity management; authentication; blockchain; smart contract

1 Introduction

Federated identity management (FIM) enables users to access multiple systems using a single
login credential. In industry implementations (e.g., with Amazon, Google, and Facebook
authentication4), multiple entities collaborate such that one entity in the collaboration can
authenticate users for other entities; it requires complex interactions to enable a user to
perform a business interaction with some ‘relying party’ (RP) (e.g., a business) and have the
authentication performed by a ‘credential service provider’ (CSP) (the entity performing
the authorizations) [TA18]. It may involve redirecting a user from an RP to a CSP and then
back to the RP post-authentication with the CSP communicating with both the user and RP.
CSPs likely will charge for this service while being able to violate the privacy of users by
seeing with which RPs they interact. Complicating matters further, FIM often supports the
transferring of user attributes (e.g., age) to an RP to support a business interaction.
1 National Institute of Standards and Technology, Computer Security Division, 100 Bureau Drive Gaithersburg,

MD 20899 U.S.A. peter.mell@nist.gov
2 National Institute of Standards and Technology, Computer Security Division, 100 Bureau Drive Gaithersburg,

MD 20899 U.S.A. james.dray@nist.gov
3 National Institute of Standards and Technology, Computer Security Division, 100 Bureau Drive Gaithersburg,

MD 20899 U.S.A. james.shook@nist.gov
4 Any mention of commercial products is for information only; it does not imply recommendation or endorsement.

cba

https://creativecommons.org/licenses/by-sa/4.0/
peter.mell@nist.gov
james.dray@nist.gov
james.shook@nist.gov

2 Peter Mell, James Dray, James Shook

In this work, we provide an identity management system (IDMS) that provides FIM such
that a user can authenticate and transfer attributes to an RP without the involvement of a CSP
(thereby heightening privacy and reducing costs). We accomplish this through leveraging a
smart contract running on a blockchain5. User to RP interactions do not need to transact
with the smart contract, they simply use data from a copy of the blockchain. Thus, there is
no need for the user or RP to wait for blockchain blocks to be published or to pay blockchain
transaction fees. User to RP communications are extremely fast and free.

Our IDMS is hierarchically managed enabling authorities to manage user accounts and
associate attributes with accounts. However, users are granted a degree of self-sovereignty; a
user must approve added attributes and can view and delete their data. Privacy is maintained
by either adding only hashes of attributes to user records, by only adding data encrypted
with the user’s public key, or by only adding references to external and secured databases
that house user attribute data. We emphasize that user to RP interactions are completely
private, something not possible in current systems using a CSP for authentication.

We implemented our IDMS on the Ethereum platform [Eth]. Charges are only incurred when
creating and updating user accounts, which is something that is relatively rare compared to a
user freely and regularly interacting with RPs. Also, user account update functions are very
cheap, all costing less than $0.09 USD (as of September, 2018). We note that other FIM
smart contract systems are in development, but ours difers primarily in being a managed
approach that still provides a degree of user self-sovereignty. This provides advantages in
having authoritative identity attributes for users and having the ability to validate attribute
providers.

The rest of the paper is structured as follows. Section 2 describes the overall contract design
and section 3 describes the attribute feld design. Then section 4 outlines the core functions
of the IDMS system: authenticating users and passing attributes. Section 5 provides an
example, section 6 discusses our implementation, section 7 explains why we use smart
contracts, and section 8 enumerate achieved security properties. Section 9 provides the
related work and section 10 our conclusions.

2 IDMS Contract Design

Our IDMS is implemented within a smart contract accessed by fve types of entities: the
IDMS owner, account managers, attribute managers, users, and RPs (shown in fgure 1).
The frst four issue transactions to the blockchain to manage user accounts (relatively rare
events). Users and RPs use public blockchain data to authenticate a user and pass attributes
(the more common events). Both the managers and users have IDMS accounts. Manager
data is publicly readable while user data is kept private using hashes and encryption.

5 See [Yag+18] for an overview of blockchain and smart contract technology.

Smart Contract Federated Identity Management 3

Smart Contract: The smart contract is modeled as being immutable; once deployed, it
is not owned and is its own entity. Alternately, it may be coded for the IDMS owner to
update it with participant agreement (e.g., a voting mechanism) or after a notifcation period
(allowing participants time to withdraw from the IDMS if they disapprove of the changes).

IDMS Owner: The IDMS owner is limited by the contract to authorize and deauthorize
managers. For authorization, an entity creates a blockchain account, gives their public key
to the owner, and the owner directs the contract to create an IDMS manager account for that
public key. For deauthorization, the account record is marked as invalid. For each created
manager, the owner specifes one or more descriptor felds. This should follow a standard
nomenclature to enable automated evaluation of these felds by other entities (e.g., by RPs).

Account managers: Account managers authorize user accounts in an analogous manner
as the IDMS owner does for managers. User records are pseudonymous, they contain no
identifying information. An account manager can only perform deauthorization on accounts
they created. If a user’s private key is lost or stolen, the account manager may authorize
a new account for the user using a new public key generated by the user and deauthorize
the old account. The IDMS owner can require the account managers to perform identity
proofng at some level, confrming that users are whom they claim to be. The contract can
require a subset of the collected attributes to be posted to the user account. We refer to such
attributes as ‘identity attributes’; they can be updated at any time by the account manager.

Attribute managers: Attribute managers add attributes to users’ accounts. However, users
must frst grant them permission. They may revoke any attributes previously added.

Users: Users may unilaterally delete non-identity attributes (to avoid them changing their
identity). They may also delete their IDMS account completely. As mentioned previously,
they must authorize any attribute manager to add attributes to their account.

RPs: RPs keep a local copy of the contract state, extracted from the blockchain, and execute
contract ‘view’ functions on that copy to enable reading the contract data. They do not have
accounts on the contract or transact with the contract.

Fig. 1: IDMS Contract Design Relative to a Single User

4 Peter Mell, James Dray, James Shook

3 IDMS Attribute Field Design

An important design element is the attribute feld. Each feld has a hash of a user attribute
(put there by the applicable account manager or an attribute manager). If the actual attribute
data is included to allow for easy user retrieval (which is not necessary), it is encrypted with
a secret key that is then encrypted with the user’s public key to preserve user privacy. It
is expensive to store data on a blockchain; if the data is large (e.g. video or image fles),
an of-blockchain location of the data may be posted to the attribute feld. This might be
used, for example, with images of physical credentials such as driver’s licenses, visas, social
security cards, and passports. Note that the source of each attribute feld is public to allow
RPs to check the authority behind each user provided attribute.

Field Name Field Description
ManagerPublicKey Public key of manager that posted the attribute
Identity Boolean to indicate if this is an identity attribute
EncryptedSecretKey Secret key encrypted with the user’s public key
Descriptor Encrypted description attribute data
Data Encrypted attribute data
Location Location for downloading data
Hash Hash of the unencrypted descriptor and data

Tab. 1: Contents of an Attribute Field

To accomplish this, we use the attribute feld structure shown in table 1. The ‘ManagerPub-
licKey’ feld is the public key of the manager that posted the attribute to the user’s account.
This key can enable anyone to look up the manager in the IDMS using the publicly available
blockchain data. Manager accounts contain only unencrypted attributes so that anyone can
verify who posted an attribute. Note that only the contract owner can authorize a manager
and populate its data felds, thus the unencrypted attributes within a manager’s account
are considered authoritative. The ‘Identity’ feld is a boolean indicating whether or not an
attribute is an identity attribute. The ‘EncryptedSecretKey’ is the secret key that was used
to encrypt the attribute descriptor and data felds. The ‘Descriptor’ feld is an encrypted
feld that explains what the attribute data feld contains6. The optional ‘Data’ feld contains
encrypted attribute data (these must be appended with a nonce prior to encryption to prevent
guessing attacks when the attribute space is limited). The optional ‘Location’ feld identifes
a public location where the encrypted attribute data is available. The ‘Hash’ feld is a hash
of the unencrypted Data feld appended with the unencrypted Descriptor feld. This enables
an RP to verify that a user is providing them the correct data and descriptor felds for a
particular source. Note that if neither the Data or Location felds are provided, the user must
maintain copies of the data for which the relevant hashes are posted.

6 Implementations of this should standardize on a set of descriptors and a format for the data feld to promote
automated processing of the attribute data.

Smart Contract Federated Identity Management 5

4 IDMS Core Functions

In this section we will describe the core functions for our conceptual IDMS system: 1)
authentication of users and 2) secure transmission of user attributes. A key design feature
is that the user and RP can achieve this without any interaction with a third party (they
don’t even need to transact with the smart contract). However, the user needs access to their
attribute descriptors and data. These could be maintained by the user, downloaded from the
blockchain (if stored in encrypted form in the user’s record), or downloaded and decrypted
from the location specifed in the location feld of the user’s record. The user will also need
to maintain their private key. This could be done in a hardware dongle to promote security
and portability between devices, but could also be copied to multiple devices if desired.

The RP will need access to a copy of the blockchain on which the contract is being executed
(which is publicly available through the blockchain peer-to-peer network). They need only
store the small portion relevant to the contract data. This must be a version recent enough as
to have a hash of the attributes that the user will provide to the RP. Note that the RP does
not need a blockchain account and the user will not need to transact with their blockchain
account for these core functions (they do so only to maintain their contract user record).

4.1 IDMS Authentication

Fig. 2: Example User to RP Authentication Function

Our frst core function enables U to authenticate to some RP1 given that RP1 can access
U’s public key from the IDMS data on the public blockchain. This could be done through
many approaches; here we present a method using Transport Layer Security (TLS). Our
approach is similar to using TLS with client-side certifcates, except that in our scenario no
such client-side certifcate exists. We achieve this by creating a TLS session, but within that
session adding an additional challenge response mechanism followed by RP1 generating
a fnal symmetric key used for a second encrypted tunnel within the original TLS tunnel.

6 Peter Mell, James Dray, James Shook

With additional engineering, this tunnel within a tunnel approach could be replaced with
the second ‘challenge response’ tunnel replacing the frst TLS tunnel.

More specifcally for our example approach, U establishes a TLS tunnel with RP1. U then
sends a message to RP1 claiming to own account ‘User 1’ in the IDMS. RP1 then accesses
the IDMS account ‘User 1’ using its local copy of the blockchain and retrieves the posted
public key. RP1 sends a random challenge to U encrypted with the public key posted on
the IDMS account. U decrypts this with his private key and sends the result to RP. If the
correct value was returned by U, then U has proved ownership of account ‘User 1’. Next,
RP1 encrypts a symmetric key with U’s public key to use for the second encrypted tunnel
and sends it to U. U obtains the symmetric key by decrypting with his private key. At this
point both U and RP1 have mutually authenticated and have established an encrypted tunnel.
This process is shown in fgure 2.

Note that in TLS, U produces the symmetric key used for the encrypted tunnel. However, in
our secondary tunnel it is necessary that RP1 produce the symmetric key and encrypt it with
U’s public key to avoid a man-in-the-middle attack. We must prevent RP1 from being able
to masquerade as U while accessing some RP2 (because RP1 could answer RP2’s challenge
using a response obtained by issuing the same challenge to U).

4.2 IDMS Attribute Transfer

Fig. 3: User to RP Attribute Transfer Function

Our second core function enables U to send attributes to RP (e.g., personal information
necessary to complete some interaction). U obtains a decrypted copy of an attribute
descriptor and data (from a local store, from an encrypted version stored in the user’s IDMS
record, or from a server whose location is specifed in the user’s IDMS record). U sends the
descriptor and data to RP. RP hashes a concatenation of the data and descriptor and then
verifes that the result matches a hash on the user’s IDMS record. The RP can then use the
’ManagerPublicKey’ feld in the matching attribute record to evaluate the attribute source.

The manager accounts have unencrypted descriptor felds populated by the owner to enable
an RP to automatically evaluate the authority of a manager account (e.g., that the manager
issuing a drivers license really is the correct government agency). By the owner populating

Smart Contract Federated Identity Management 7

these public manager descriptor felds with a standard nomenclature, automated evaluation
by RPs of a manager’s authority can be enabled.

5 Example Use Case

A government deploys an instance of our IDMS contract to a blockchain and is the owner.
The owner authorizes account manager entities to perform identity proofng and add users.
This is likely organizations already performing related activities, such as banks and local
governments. A user Bob goes to his bank to have an account created in the IDMS. After
providing the necessary documentation, he is granted an account. The owner also authorizes
a university as an attribute manager with the descriptor felds ‘university’ and ‘University
of Corellia’. The former is a standardized descriptor to enable automated processing while
the latter provides the name of the specifc university (note that how to create ontologies of
descriptors is out of scope of this work). Bob then requests that the University of Corellia
post his degree to his IDMS account. Bob must frst prove to the university using the core
IDMS functions that 1) he owns the account and 2) that the account is for his identity by
passing them identity attributes. Bob then transacts with the IDMS contract to give the
university permission to post attributes to his account. The university gives Bob a digital
image of his degree and also posts an attribute on Bob’s IDMS account with a hash of
the digital image and a location feld indicating where Bob can login and download the
image of of university servers (in case Bob loses the originally provided digital image).
The university posts a second attribute indicating his grade point average (GPA). Since this
is a small data feld, it is encrypted along with a standard sized nonce and placed inside the
attribute feld. Bob can download this anytime of of the blockchain and use his private key
to decrypt it. Bob then applies for a job with Ally, who wants proof that Bob graduated with
a minimum GPA. Bob uses the core IDMS functions to prove that 1) he owns the IDMS
account and 2) that the account contains the attributes necessary to convince Ally that Bob
received a degree and graduated with a sufcient GPA. When Ally receives and verifes the
attributes sent by Bob, she then checks the descriptor felds associated with the attributes.
She verifes that the attributes were provided from a university using the frst descriptor
feld and she reads of the specifc university using the second descriptor feld.

6 Implementation Details and Empirical Study

We implemented our IDMS using a smart contract running on the Ethereum platform [Eth]
and created apps to interact with the smart contract. The contract implements all of the
functionality described in section 2 and it contains methods to support the core functions
described in section 4. Note that we left for future work the implementation of the of
blockchain U to RP interactions.

We tested all contract interactions described in sections 2 and 4. There were two types of
interactions: transactions and views. Transactions are function calls that change the state of

8 Peter Mell, James Dray, James Shook

the contract; they thus must be submitted to the miners so that the changes can be stored on
the blockchain. Views are function calls that look like transactions except that they do not
alter the state of the contract; they thus can be executed locally by a node that has a copy of
the blockchain. This makes their use free and fast. Table 2 lists the implemented functions.

Function Type Permitted Role Gas Ether USD
Add Manager Transaction Contract Owner 66632 2.0E-4 $0.03
Delete Manager Transaction Contract Owner 17677 5.3E-5 $0.01
Add User Account Transaction Account Manager 94562 2.8E-4 $0.05
Delete User Account Transaction Account Manager 65020 2.0E-4 $0.03
Add Attribute Transaction Managers / Users 182045 5.5E-4 $0.09
Delete Attribute Transaction Managers / Users 33017 9.9E-5 $0.02
Permit Attribute Manager Transaction Users 45151 1.4E-4 $0.02
Deny Attribute Manager Transaction Users 15283 4.6E-5 $0.01
Compare Hash View Public 0 0 $0
View Attribute View Public 0 0 $0
View Public Key View Public 0 0 $0

Tab. 2: IDMS Contract Functions and Costs ($219.01 USD/Ether as of September 27, 2018)

Note that the view functions are used by users and RPs for their interactions. The transaction
functions are only used to set up the IDMS data structures. Thus, normal operation of our
IDMS is extremely fast and does not cost anything. Creating user accounts and updating
them with attributes costs a modest amount of funds (e.g., less than $1 USD), but such
activities are relatively rare compared to users interacting with RPs.

7 Reasons to use a Smart Contract

Use of the smart contract promotes trust in the system while providing a convenient vehicle
for data distribution and update of a distributed and resilient data store. The smart contract
code is publicly viewable and immutable, thus all participants know how it will operate and
all entities are constrained to their roles. In particular, the owner is limited to just creation
and deletion of manager roles; no access to user accounts is provided. The blockchain
peer-to-peer network makes it convenient to distribute the IDMS data to participating
entities. This also provides transparency and audit-ability for all IDMS transactions. Since
the user to RP interactions don’t modify the blockchain, this transparency doesn’t cause a
problem with user privacy. Lastly, the smart contract approach enables one to deploy an
IDMS without the need to build and maintain any infrastructure.

8 Security Properties

We now summarize the security and privacy properties needed for our model and then
explain how each security property is fulflled by our IDMS and then discuss a residual
weakness. The specifc security properties are as follows:

Smart Contract Federated Identity Management 9

1. User attribute data is encrypted such that only the user can decrypt it.

2. Users can securely share their attribute data with other parties.

3. Users can unilaterally remove their attributes.

4. Users can unilaterally remove their account.

5. Users can have multiple accounts in order to hide their association with certain
attribute managers.

6. Account managers can only remove accounts that they created. Owners and attribute
managers may not remove accounts.

7. Account managers can only modify the identity attributes for accounts they created.

8. Attribute managers may only place attributes if explicitly permitted by the relevant
user.

9. Owners may only add and remove account/attribute managers and update the IDMS
contract code.

10. IDMS contract code may only be updated by the owner following due process laid
out in the contract (which is publicly available to all users of the contract).

11. Relying parties can trust account managers to perform identity proofng that binds
real world entities to user accounts at a stated level of assurance.

These security properties are provided primarily by the contract itself. Except under
conditions documented within the contract, the code is immutable. The code is also public
so that users can verify that these properties will be held. The contract directly enforces
security properties 3, 4, 6, 7, 8, 9, and 10. Key to this enforcement is for the smart contract
to authenticate the party requesting a change. This is handled by the smart contract system,
leveraging the accounts on the blockchain. Thus, our approach does not have to implement
that part of the trust model.

Property 1 is enacted by the account and attribute managers when they place attributes
on a user account. There is nothing in the contract to prevent the posting of unencrypted
attributes, but there is no motive for a manager to do so and there could be repercussions
(e.g., the owner could remove the manager from the IDMS).

Property 2 is enabled since our IDMS architecture provides a way for a user and RP to
directly authenticate and pass attributes. All they need is to use a standard encrypted
connection within which to execute our protocol.

Property 5 can be provided by a user’s account manager. It is trivial to create additional
accounts on blockchain systems, thus the user can do so easily. The account manager then
simply creates an IDMS account with the public key associated with each of the user’s
accounts. Based on our empirical work, there may be a modest cost to create each account

10 Peter Mell, James Dray, James Shook

(e.g., $0.05 USD). Also, we note that users are not required to pass RPs their identity
attributes, enabling them to pass other attributes without revealing their identity. This can
enable transactions to authenticate that a person has some attribute while staying anonymous.
An example might be an online forum where only members of a certain organization can
post messages but where the poster’s identity is to remain anonymous.

Property 11 is achieved through the contract owner auditing the account managers to ensure
that users are identity proofed at the required or advertised level of assurance. If account
managers are non-compliant then the contract owner can revoke their accounts.

Despite these security protections, we note an important limitation. An account managers
could use their knowledge of a user’s identity attributes to create a clone identity for someone
else. This is analogous to a government duplicating someone’s passport but including a
diferent picture to enable someone to act as someone else. To our knowledge this problem
exists in the related schemes (discussed next) whenever attribute managers act maliciously.

9 Related Work

Many organizations are investigating using blockchain technology for identity management.
Our approach is unique in providing a managed hierarchical approach with user self-
sovereignty that can authoritatively validate attribute providers (or claim providers).

uPort: uPort is an ‘open identity system for the decentralized web’ [uPo18]. uPort users
create and manage self-sovereign identities by creating Ethereum accounts linked to a
self-sovereign wallet. Being unmanaged and fully self-sovereign, there is no entity identity
proofng of user accounts [Lun+17]. Our approach difers in that it provides a managed
solution that still provides a level of self-sovereignty. This managed aspect can enforce
validation on the claim providers not possible in completely unmanaged systems.

SCPKI: The paper entitled ‘SCPKI: A Smart Contract-Based PKI and Identity System’
[AlB17] addresses the issue of rogue certifcates issued by Certifcate Authorities in
traditional public key infrastructures. It proposes an alternative PKI approach that uses smart
contracts to build a decentralized web-of-trust. The web-of-trust model is adopted from
the Pretty Good Privacy (PGP) system [Gar95]. SCPKI supports self-sovereign identity by
defning a smart contract that allows users to add, sign, and revoke attributes. Users can
sign other user’s attributes, gradually building a web-of-trust where users vouch for each
others’ identity attributes. As with uPort, our approach difers in that it provides a managed
model that can provides additional assurances on claims.

Ethereum Improvement Proposal 725: Ethereum Improvement Proposal 725 [Vog17]
(EIP-725) defnes a smart contracts based identity management framework where each
identity account is a separate smart contract. It supports self-attested claims and third party
attestation. EIP-725 is augmented by EIP-735 [Vog], which specifes standard functions for
managing claims and is supported by the ERC-725 Alliance [ERC]. An online ERC-725

Smart Contract Federated Identity Management 11

DApp demonstration is available [0RI]. Our approach has similar capabilities but does not
require every user and issuer of claims to have their own smart contract; ours is also a
hierarchical managed model.

Sovrin: Sovrin is ‘a protocol and token for self-sovereign identity and decentralized trust’
[Sov]. Its goal is to replace the need for PKIs and to create a Domain Name System (DNS)
type system for looking up public keys to be used for identity management purposes through
building a custom blockchain system. It is a permissioned based cryptocurrency with no
consensus protocol, thus it has centralized ownership of the tokens. The managing Sovrin
foundation must approve all nodes managing the blocks but is appealing for community
involvement in running nodes. The token is a cryptocurrency so that value can be exchanged
along with supporting identity transactions. Our approach difers in that it doesn’t require its
own blockchain or cryptocurrency and can be executed on top of any smart contract system.

Decentralized Identity Foundation: The Decentralized Identity Foundation (DIF)is a large
partnership with the stated goal of building an open source decentralized identity ecosystem
[Fou18]. The primary focus is on high level framework, organizational issues, and standards.
DIF plans to develop a broad, standards based ecosystem that supports a range of diferent
implementations.

Other Related Work: There are many other FIM related blockchain projects that cannot be
referenced here due to space limitations. For the majority of them, the design details are
unavailable or are in constant fux due to the nascent nature of this market.

10 Conclusions

We have demonstrated that it is possible to design a FIM system that enables direct user
to RP authentication and attribute transfer without the involvement of a third party. We
implemented this using a smart contract and identifed the advantages of taking such an
approach. We note that user to RP interactions do not require transactions with the contract,
making them fast, free, and private.

Our approach provides strong user self-sovereignty so that only the user can view and share
their attribute data. However it is a managed system, intentionally not fully self-sovereignty
as with the cited related work to prevent users from unilaterally changing their own identity
and to provide greater validation of attribute providers. Our limits on self-sovereignty also
enable the IDMS to provide authoritative and consistent data about users and participating
organizations. Our approach is thus suitable for a large organization to provide identity
management services to its constituents (e.g., a government). Once established by a large
entity, other organizations may leverage the IDMS to provide attributes to their users and
gain the ability to identify and authorize users (but only with user permission). If the owner
of the contract opens up the system to many account managers and attribute managers, this
will create a powerful identity management ecosystem (as opposed to being a service only
for a particular purpose).

12 Peter Mell, James Dray, James Shook

Bibliography

[0RI] 0RIGIN. 0RIGIN Protocol Demo. url: https://demo.originprotocol.com
(visited on 02/05/2019).

[AlB17] Mustafa Al-Bassam. “SCPKI: a smart contract-based PKI and identity system”.
In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and
Contracts. ACM. 2017, pp. 35–40.

[ERC] ERC-725 Alliance. ERC-725 Ethereum Identity Standard. ERC-725 Alliance.
url: http://erc725alliance.org (visited on 02/05/2019).

[Eth] Ethereum Foundation. Ethereum. url: https://www.ethereum.org/ (visited
on 02/05/2019).

[Fou18] Decentralized Identity Foundation. DIF. 2018. url: http : / / identity .
foundation (visited on 04/20/2018).

[Gar95] Simson Garfnkel. PGP: pretty good privacy. Ö’Reilly Media, Inc.", 1995.
[Lun+17] Christian Lundkvist et al. “Uport: A platform for self-sovereign identity”. 2017.

url: https://whitepaper.%20uport.%20me/uPort%5C_%20whitepaper%5C_
DRAFT20170221.pdf.

[Sov] Sovrin Foundation. Sovrin: A Protocol and Token for Self-Sovereign Identity and
Decentralized Trust. url: https://sovrin.org/wp-content/uploads/2018/
03/Sovrin-Protocol-and-Token-White-Paper.pdf (visited on 02/05/2019).

[TA18] David Temoshok and Christine Abruzzi. NISTIR 8149 Developing Trust Frame-
works to Support Identity Federations. Tech. rep. National Institue of Standards
and Technology, 2018. doi: 10.6028/NIST.IR.8149.

[uPo18] uPort. uPort Developers. uPort. 2018. url: http://developer.uport.me/
overview.html (visited on 04/20/2018).

[Vog] Fabian Vogelsteller. ERC: Claim Holder # 735. GitHub. url: https://github.
com/ethereum/EIPs/issues/735 (visited on 02/05/2019).

[Vog17] Fabian Vogelsteller. EIP 725: Proxy Identity. Ethereum Foundation. Oct. 2, 2017.
url: https://eips.ethereum.org/EIPS/eip-725 (visited on 02/06/2019).

[Yag+18] Dylan Yaga et al. NISTIR 8202 Blockchain Technology Overview. Tech. rep.
National Institue of Standards and Technology, 2018. url: https://csrc.
nist.gov/publications/detail/nistir/8202/draft.

https://demo.originprotocol.com
http://erc725alliance.org
https://www.ethereum.org/
http://identity.foundation
http://identity.foundation
https://whitepaper.%20uport.%20me/uPort%5C_%20whitepaper%5C_DRAFT20170221.pdf
https://whitepaper.%20uport.%20me/uPort%5C_%20whitepaper%5C_DRAFT20170221.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
http://dx.doi.org/10.6028/NIST.IR.8149
http://developer.uport.me/overview.html
http://developer.uport.me/overview.html
https://github.com/ethereum/EIPs/issues/735
https://github.com/ethereum/EIPs/issues/735
https://eips.ethereum.org/EIPS/eip-725
https://csrc.nist.gov/publications/detail/nistir/8202/draft
https://csrc.nist.gov/publications/detail/nistir/8202/draft

	Introduction
	IDMS Contract Design
	IDMS Attribute Field Design
	IDMS Core Functions
	IDMS Authentication
	IDMS Attribute Transfer

	Example Use Case
	Implementation Details and Empirical Study
	Reasons to use a Smart Contract
	Security Properties
	Related Work
	Conclusions

