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Abstract. ZHFE, designed by Porras et al., is one of the few promis-
ing candidates for a multivariate public-key encryption algorithm. In 
this article we extend and expound upon the existing security analysis 
on this scheme. We prove security against differential adversaries, com-
plementing a more accurate and robust discussion of resistance to rank 
and algebraic attacks. We further suggest a modification, ZHFE− , a 
multivariate encryption scheme which retains the security and perfor-
mance properties of ZHFE while optimizing key size in this theoretical 
framework. 
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1 Introduction 

Since the late 1990s, a large international community has emerged to face the 
challenge of developing cryptographic constructions which resist attacks from 
quantum computers. The birth of this new discipline is due primarily to the 
discovery by Peter Shor in the mid 90s, see [1], of algorithms for factoring and 
computing discrete logarithms in polynomial time on a quantum computing de-
vice. The term post-quantum cryptography was coined to refer to this developing 
field and to emphasize the fact that information security in a quantum comput-
ing world is a fundamentally new science. 

Today, we face mounting evidence that quantum computing is not a physical 
impossibility but merely a colossal engineering challenge. With the specter of the 
death of classical asymmetric cryptography looming on the horizon, it is more 
important than ever that we develop systems for authentication, confidentiality 
and key exchange which are secure in the quantum paradigm. We thus are forced 
to turn to problems of greater difficulty than the classical number theoretic 
constructs. 

Systems of polynomial equations have been studied for thousands of years and 
have fueled the development of several branches of mathematics from classical 
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to modern times. Multivariate Public Key Cryptography(MPKC) has emerged 
from the serious investigation of computational algebraic geometry that reached 
maturity in the latter half of the last century. Today, we see MPKC as one of a 
few serious candidates for security in the post-quantum world. 

A fundamental problem on which the security of any multivariate cryptosys-
tem rests is the problem of solving systems of quadratic equations over finite 
fields. This problem is known to be NP-hard, and copious empirical evidence 
indicates that the problem is hard even in the average case. There is no known 
significant reduction of the complexity of this problem in the quantum model 
of computing, and, indeed, if this problem is discovered to be solvable in the 
quantum model, we can solve all NP problems and the task of securing infor-
mation might be hopeless in principle. We thus reasonably suspect that MPKC 
will survive the transition into the quantum world. 

Though multivariate cryptosystems almost always suffer from rather large 
key sizes, the key sizes are rarely so large that they are impractical and these 
systems can often be quite attractive in certain other aspects of performance. 
Some systems are very fast, having speeds orders of magnitude faster than RSA, 
[2–4]. Some schemes combine speed with power efficiency and small signature 
sizes, [5, 6]. Perhaps most importantly, it is generally simple to parameterize 
multivariate systems in such a way that vastly different properties are derived 
foiling various attack methodologies. 

One great difficulty historically for MPKC is encryption. Though there are 
several viable options for digital signatures, see [5–8], there is a general absence 
of long-lived encryption systems. In the last couple of years, a couple of new 
encryption techniques have been proposed, see [9–11]. These systems are based 
on the simple idea, proposed by Ding, that the structure of a system of equations 
can retain injectivity without an extremely restrictive structure if the codomain 
is of much larger dimension than the domain. 

In [12], however, a new and unexpected attack was presented on the ABC 
simple matrix encryption scheme of [9]. This attack is notable in that the com-
plexity is far less asymptotically than predicted by the analysis in [9], though 
it does not break the scheme outright. This begs the question of the tightness 
of the security analyses in [10, 11] and the extent to which we can trust in the 
security of such young schemes in a field which has no significant success history 
in encryption. 

Furthermore, one might ask whether there is some middleground on the ratio 
of the dimension of the codomain to that of the domain for these multivariate 
encryption schemes. Even if one concurs that relaxing the relationship between 
the dimensions of the domain and codomain enhance the security of injective 
maps, it remains unclear that the disparity should be so large as in the proposed 
schemes in which there are at least twice as many equations as variables. 

In this article we extend and expound upon the security analysis in [11], 
incorporating some of the theoretical models of assurance presented in [13–15]. 
We prove security against differential adversaries complementing the discussion 
of resistance to algebraic attacks provided in [11]. We further elucidate the rank 
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structure of ZHFE and specifically note some necessary, but trivial, key restric-
tions for security which were apparently overlooked in [11]. We further suggest 
a modification, ZHFE−, a multivariate encryption scheme which retains the 
security and performance properties of ZHFE while optimizing key size in this 
theoretical framework. 

The paper is organized as follows. The next section introduces the notion 
of big field schemes and presents the prototypical such cryptosystem, HFE. In 
the following section, we define the Q-rank of a multivariate system of equa-
tions and discuss the central nature of this concept in the field. The subsequent 
section presents the ZHFE encryption scheme and calculates some of its in-
herent parameters. Next we present a thorough security analysis of ZHFE, 
complementing and expanding the analysis provided in [11] and offering secu-
rity assurance against a differential adversary as well as discussing parameters 
securing ZHFE against rank and algebraic attacks. Subsequently, we present 
and analyze ZHFE−, a new multivariate encryption scheme based on ZHFE 
and the minus modifier. Finally, we note parameter choices for ZHFE− and 
discuss the role that the new methodology for multivariate encryption fills in 
the literature. 

2 HFE 

Several multivariate cryptosystems belong to a family collectively known as “big 
field” schemes. Such schemes are constructed using two ideas. The first is an 
equivalence between functions on a degree n extension k of a finite field Fq and 
functions on an n-dimensional Fq-vector space. The second is an isomorphism of 
polynomials which allows one to hide structure in a function. 

To see the equivalence, notice that a vector space isomorphism between k 
and an n-dimensional vector space over Fq extends to a vector space isomor-
phism between the space of univariate functions from k to itself and the space 
of multivariate n-dimensional vector-valued polynomial functions from Fnq to it-
self. (Specifically, given an isomorphism φ : Fnq → k and a function f : k → k, 
the function φ−1 ◦ f ◦ φ is such a function from Fnq to itself; furthermore, this 
identification is a 1-1 correspondence.) 

The second idea, the isomorphism of polynomials, is defined in the following 
manner. 

Definition 1 Two vector valued multivariate polynomials f and g are said to 
be isomorpic if there exist two affine maps T,U such that g = T ◦ f ◦ U . 

Together these ideas allow us to build an isomorphic copy of a structured 
univariate map with domain k while hiding the structure. The construction is 
sometimes called the butterfly construction because of the shape of its defining 
commutative diagram. Specifically, P = T ◦ φ−1 ◦ f ◦ φ ◦ U produces a perturbed 
vector-valued version of the structured univariate polynomial f . 

The Hidden Field Equations (HFE) scheme was first presented by Patarin 
in [16] as a method of avoiding his linearization equations attack which broke 
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the C∗ scheme of Matsumoto and Imai, see [17] and [18]. The basic idea of the 
system is to use the butterfly construction to hide the structure of a low degree 
polynomial that can be inverted efficiently over k via the Berlekamp algorithm 
[19], for example. 

More specifically, we select an effectively invertible “quadratic” map f : k → 
k, quadratic in the sense that every monomial of f is a product of a constant and 
two Frobenius multiples of x. Explicitly any such “core” map f has the form: X Xi j i 

f(x) = αi,j x
q +q + βix

q + γ. 
i≤j i 

q i+qj ≤D q i≤D 

The bound D on the degree of the polynomial is required to be quite low for 
efficient inversion. 

The HFE scheme was designed to be used as an encryption or a signature 
scheme. To generate a signature (or to decrypt), one computes, successively, v = 
T −1y, u = f−1(v) and x = U−1u. The vector x is the signature (or the plaintext). 
For verification (or encryption), one simply evaluates the public polynomials, P , 
at x. If P (x) which is equal to T ◦ f ◦ U(x) is equal to y, the signature is 
authenticated (or the ciphertext is y). 

3 Q-Rank 

The defining charactersitic of HFE, the degree bound, which is necessary for 
the effective inversion of the central map, ensures that the scheme has low rank 
as a quadratic form over k, as described below. This property assures that the 
central map of HFE is vulnerable to Kipnis-Shamir modeling, see [20, 21]. 

Recall that any quadratic map f : k → k can be written X 
q i+qj 

f(x) = αij x . 
0≤i,j<n 

We can equivalently express f as a vector function over the 1-dimensional k-
algebra ψ : k → kn where h iTψ n−1 

α 7−→ α αq . . . αq , 

q q ]Tin the form f(X) = XT [αij ]X where X = [x x . . . x
n−1 

. 
Any quadratic form over k can be expressed as a symmetric matrix, and over 

characteristic p 6 2 a change of basis can be performed which transforms this = 
matrix into an equivalent diagonal form. The rank of this matrix is the rank of 
the quadratic form. We call this rank the Q-rank of f , that is the rank of f as 
a quadratic function. 

We note here that Q-rank is invariant under polynomial isomorphism, thus 
the Q-rank of a central map of a cryptosystem is the same as the Q-rank of the 
public key, unless, of course, the minus or projection modifiers are utilized. We 
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also note that the Q-rank is explicitly exploited in the attacks of [20, 21] and 
plays a central role in the derivation of degree of regularity bounds for several 
prominent cryptosystems, see [22–24]. Further, there seems to be a complicated 
relationship between the Q-rank of a field map and the presence of differential 
symmetric or invariant relations, see, for example [15]. Consequently, Q-rank 
seems to be emerging as a central concept in multivariate cryptography and in 
computational algebra. 

4 ZHFE 

ZHFE was introduced in [11]. The idea is to construct an encryption scheme 
with a high Q-rank central map preventing attacks such as [21] exploiting this 
weakness. The scheme is notable among “big field” schemes which typically re-
quire some low Q-rank map for efficient inversion. Low Q-rank is in fact required 
for inversion in this setting as well, however, the system attempts to hide the 
low Q-rank structure in the public key. 

The construction concatenates two high degree quadratic maps (with special 
structure) to form the central map. Specifically, the two general form quadratic 
maps f0 and f1 are derived by constructing a low degree (maximum degree D) 
cubic map 

Ψ(x) = x [L00f0(x) + L01f1] + xq [L10f0 + L11f1] , (1) 

where Lij is a linear map and the square brackets indicate multiplication over 
k. 

To solve for f0 and f1 it suffices to set coefficients for the linear maps and 
for Ψ to recover a system of linear equations in the unknown coefficients of f0 

2and f1. In the homogeneous case, there are collectively n + n coefficients of f0 

and f1 in k. Due to its low degree and the requirement that it satisfy (1), Ψ is 
constrained to be of the form 

1 1 1X X X X Xi j k i j i q +q +q q +q qΨ(x) = αi,j,kx + βi,j x + γix . (2) 
i=0 i≤j≤k i=0 i≤j i=0 

i j iq +q +q k ≤D q +qj ≤D 

A cubic of the form (2) has n2 coefficients over k, and thus for any fixed choice of 
2Ψ and Lij there are n2 constraints on a linear system of dimension n + n. Thus 

with probability roughly 1 − q−n, there is an n-dimensional space of coefficients 
for the maps f0 and f1. 

Once, constructed, the central map (y0, y1) = (f0(x), f1(x)) can be inverted 
by using Berlekamp’s algorithm to solve the low degree polynomial equation: 

Ψ(x) − x [L00y0 + L01y1] − xq [L10y0 + L11y1] = 0. 
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5 Analysis of ZHFE 

A few avenues of attack have evolved along with the development of multivariate 
cryptosystems relying on a hidden large algebra structure. These attacks can be 
characterized as differential, see [25, 12], as minrank, see [20, 21], or as algebraic, 
see [26]. We analyze the security of ZHFE against each of these attack models. 

5.1 Algebraic 

Algebraic attacks attempt to decrypt a given ciphertext y by solving the system 
of equations P (x) = y directly. The term “algebraic” refers to the fact that these 
are generic algorithms for solving arbitrary systems of polynomial equations. 

While these attacks are not structural, in the sense of being defined based on 
the structure of the system of equations, the algorithms employed can naturally 
take advantage of certain properties of the systems. In practice, the complexity 
of algorithms for solving these systems of equations is closely connected to the 
degree of regularity of the system. 

The degree of regularity of a system of equations is the degree at which 
the first nontrivial degree fall occurs. Specifically, consider a generating set of 
an ideal I = hg1, . . . , gmi ∈ Fq[x1, . . . , xn]. We may generate elements of I by 
selecting polynomials pi ∈ Fq[x1, . . . , xn] and computing 

mX 
pigi. 

i=1 

A degree fall occurs when the degree of this sum is less than the maximum degree 
of pigi. Clearly some degree falls are due to trivial syzygies such as −gj gi +gigj = 

q−10 and (g − 1)gi = 0. The smallest degree, maxipigi such that the above sum i 
has a nontrivial degree fall is the degree of regularity. 

A great deal of literature is devoted to finding bounds for the degree of 
regularity of quadratic systems, see [22–24, 27]. In practice one can find a lower 
bound for the degree of regularity by studying toy examples of schemes and 
seeing how the degree of regularity changes as the parameters change. 

Such an analysis for ZHFE is quite straight forward. As mentioned in [11] 
the degree of regularity for toy ZHFE systems matches exactly the degree of 
regularity for random systems of equations of the same size, at least for relatively 
small instances. Considering the connection between Q-rank and the degree of 
regularity as derived in [22–24, 27], we conclude that a thorough Q-rank analysis 
of ZHFE will verify the security of the scheme against algebraic attacks. We 
perform this analysis in Section 5.4. 

5.2 Differential Symmetric 

As shown in [25], symmetric relations involving the discrete differential of a cen-
tral map can induce a symmetry in the public key of a multivariate cryptosystem. 
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In certain circumstances, these relations can reveal properties of the extension 
field structure, and weaken the public key. Indeed one can easily turn the attack 
on SFLASH of [25], which converts an instance of C∗− into a compatible instance 
of C∗, into a direct key-recovery attack utilizing the derived representation of 
elements of the extension field. 

As shown in [13] the maps inducing a linear differential symmetry for C∗ 

schemes are precisely those corresponding to multiplication by an element of 
the extension field. Thus one may rightfully expect that nontrivial symmetric 
relations on the differential of a central map are uncommon. It is shown, however, 
in [13] and [15] that nontrivial symmetries can and often do exist even for cases 
as general as HFE. 

As a specific example of the phenomenon of differential symmetries for gen-
q +q qeral polynomials, consider the map f(x) = x
3 2 

+ x
2+1 over a degree 6 exten-

sion of the characteristic 2 field Fq . One can easily verify that the general linear 
symmetry structure, defined as 

Df(La, x) + Df(a, Lx) = ΛLDf(a, x), 

is satisfied by the selection 

Lx = αxq 4 

+ αxq + βx and ΛLx = 0, 

where αq 3 
= α and βq = β. Thus there is a 4-dimensional Fq-subspace of linear 

maps L satisfying the above differential symmetric relation for some choice of 
ΛL, while the space of all Fq-linear maps from the extension to itself is only 
of dimension 36. Consequently, a hypothetical cryptosystem based on this map 
would be vulnerable to an attack removing the minus modifier, similar to [25], 
among other weaknesses. Quite specifically, the distillation procedure described 
in [25] is effective in this instance. We note that this scenario is by no means 
limited to toy examples such as this one or even instances with Q-rank one; thus, 
the verification of the absence of differential symmetries is an important task for 
any multivariate cryptosystem, particularly those including the minus modifier. 

In analyzing the differential symmetric properties of ZHFE, we may directly 
analyze the public key or we may study the differential of the Ψ map. We consider 
both interlinked cases explicitly. 

The public key P consists of 2n polynomials. The defining characteristic of 
these polynomials is that P = T (f0||f1)U . Thus P does not behave like a random 
system. There exists a low degree cubic map Ψ such that 

Ψ(Ux) =(Ux)(L00(T −1)1P (x) + L01(T −1)2P (x)) 
(3) 

+ (Ux)q(L10(T −1)1P (x) + L11(T −1)2P (x)). 
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We note that (T −1)iP (x) = fi(Ux). We may now implicitly differentiate this 
equation obtaining 

DΨ(Ua, Ux) =(Ua)(L00f0(Ux) + L01f1(Ux)) 

+ (Ua)q(L10f0(Ux) + L11f1(Ux)) 
(4)

+ (Ux)(L00Df0(Ua, Ux) + L01Df1(Ua, Ux)) 

+ (Ux)q(L10Df0(Ua, Ux) + L11Df1(Ua, Ux)). 

The above is a biquadratic relation in a and x, and as such doesn’t immediately 
reveal a computational way to recover information about the hidden structure 
of P . To convert this relation into a form in which we can apply linear algebra 
techniques we require a second differential. For more information on a more 
general theory of discrete differential equations, see [28]. 

Since the differential is symmetric, we get the same answer whether we dif-
ferentiate with respect to a or to x. 

D2Ψ(Ua, Ub, Ux) =(Ua)(L00Df0(Ub, Ux) + L01Df1(Ub, Ux)) 

+ (Ua)q(L10Df0(Ub, Ux) + L11Df1(Ub, Ux)) 

+ (Ub)(L00Df0(Ua, Ux) + L01Df1(Ua, Ux)) 
(5)

+ (Ub)q (L10Df0(Ua, Ux) + L11Df1(Ua, Ux)) 

+ (Ux)(L00Df0(Ua, Ub) + L01Df1(Ua, Ub)) 

+ (Ux)q(L10Df0(Ua, Ub) + L11Df1(Ua, Ub)). 

Now, due to the fact that Ψ is cubic with a small degree bound, D2Ψ is a 
cubic form of low rank. In fact, the existence of linear maps U and Lij (T −1)j 
such that equations (3) and (5) hold while D2Ψ has low cubic rank is the defining 
characteristic of ZHFE. 

In spite of the existence of this structure, it is unclear how to proceed. One 
might consider a cubic version of the rank attack from [29], however, the se-
lection of the maps Lij (T −1)j corresponds to solving a minrank problem on a 
3-tensor, D2Ψ . Though there is a possibility that the instances of the 3-tensor 
rank problem arising from this differential equation may lie in a class which 
are easy to solve, the general 3-tensor rank problem is known to be NP -hard 
and there does not seem to be any evidence that these instances are any more 
structured than arbitrary instances of the same rank. 

5.3 Differential Invariant 

As exemplified in [12] and [30], invariant relations on the differential of a public 
key can be exploited in key recovery. Although we may analyze the differential 
invariant structure of the public key of ZHF E directly, there is not in general 
any nontrivial invariant due to the fact that the structure of ZHFE is hidden 
in the cubic Ψ map. A couple of generalizations of differential invariants of 
quadratic functions are derived for higher q-degree functions in [28]. The most 
relaxed generalization for cubics is given in the following definition. 
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Definition 2 A differential invariant of a cubic function f is a pair of subspaces 
V1, V2 ⊆ k for which there exists a subspace W with dim(W ) ≤ mindim(Vi) such 
that for all A ∈ spanD2fi, we have D2f(a, b, x) = 0 for all a ∈ V1, b ∈ V2 and 
x ∈ W ⊥ . 

In the quadratic case, a differential invariant could be seen as a subspace 
of k on which Df simultaneously acts in every coordinate the same way, that 
is, always sending that subspace to the same space of linear forms of no larger 
dimension. In the cubic case we can realize a differential invariant as a subspace 
V1 of k and a subspace (defined by V2) of induced bilinear forms from D2f 
each element of which maps V1 to the same space of linear forms, W , of no 
larger dimension. The minimum condition on the dimension of W is due to the 
symmetry of D2f ; we could equivalently consider the subspace V2 of k and the 
subspace of bilinear forms from D2f induced from V1. 

It is straightforward to show that the Ψ map of ZHFE has no differential 
invariant structure. Following the technique of [15], without loss of generality, 

ˆdue to the symmetry, we let â ∈ V1, b, x̂ ∈ V2, and let S be a surjective linear 
map from V2 to W . The existence of a differential invariant implies the equation 

0 = D2Ψ(â, ̂b, S x̂) X i j l q b̂q x)q= αijlâ (S ̂ . (6) 
0≤i,j,l<n 
i jq +q +q l≤D 

Since by symmetry D is much smaller than dim(V1) or dim(V2), (6) is already 
reduced modulo the minimal polynomial MV1 (a) of V1 as an element in k[a] and 
modulo the minimal polynomial MV2 (b) of V2 as an element in k[b]. Thus the col-

d1 d2q q ˆlection {ˆ a a , b, . . . , ̂ } is independent in k[a, b]/ hMV1 (b)i.a, ̂ , . . . , ̂ bq (a), MV2 

Therefore, we obtain the equations 

0≤l<nX l 

αijl(Sx̂)
q = 0. 

0≤i,j<n 
q i+qj +q l≤D 

We then obtain the analogous result of [15]; statistically, S must be the 
zero map on V2, contradicting the nontriviallity of the differential invariant. 
Furthermore, we also obtain the result that if any power of q is unique there is 
no nontrivial differential invariant. 

5.4 Q-rank 

A further attack vector for ZHFE is to perform a minrank attack using the 
Kipnis-Shamir methodology of [20] and the improved version in [21]. The attack 
searches for a low rank k-linear combination of the differentials of the public 
key. The general minrank problem is known to be NP-complete, see [31] but in 
practice the complexity depends on the lowest rank map in the space. 
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It was shown in [21] that the smallest such rank is equal to the smallest 
Q-rank of the image of the public key under any full rank Fq-linear map. Notice 
that for (1) to hold we must have that the xq i+qj 

term in L00f0 + L01f1 to have 
icoefficient 0 for q + q 6j + 1 > D and i, j = 1. This restriction induces a relation 

on the quadratic representations of L00f0 and L01f1. Specifically, if ⎤⎡ 
x 

T ⎡ α01 α0(n−1)α00 2 · · · 
⎤⎡⎤ 

x 
α1(n

2 
−1)⎢⎢⎢⎣ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎥⎥⎥⎦
α01 
2 α11 · · ·q qxx

2 
L00f0(x) + L01f1(x) = ,. . . 

. . . 
. . .. . . . . .. . . 

n−1 n−1 q α0(n−1) α1(n−1) qx · · · α(n−1)(n−1) x2 2 

ithen αij = 0 for q + q 6j > D and i, j = 1. Thus L00f0 + L01f1 has the form ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

α00 
α01 
2 
α02 

α01 
2 
α11 
α12 
2 

α02 
2 
α12 
2 
α22 

· · · 
· · · 
· · · 

α0D 
2 

α1D 
2 

α2D 
2 

. . . . . . . . . . 

0 · · · 0 
α1(D+1) α1(n−1)· · · 2 2 

0 · · · 0 
. .. . . . .. . 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 
.. . . . 

α0,D α1D α2D · · · αDD 2 2 2
α1(D+1)0 0 · · · 02 

. . . .. . . . . . .. . . . 
α1(n−1)0 0 · · · 02 

0 · · · 0 
0 · · · 0 
. . . 

. . . 
. . . 

0 · · · 0 

and has rank no more than dlogq(D)e + 2. Hence, if Lij are nonsingular, the 
Q − rank of f0||f1 is bounded by dlogq(D)e + 2. 

In spite of the alarming relation derived above, Q-rank does not appear 
to be a weakness for ZHFE when one selects Lij to have reasonable corank. 
One can check that for small r, insisting that Lij have corank r increases the 
possible Q-rank of f0||f1 by 2r. Also, having Lij with even moderately large 
corank doesn’t produce a non-negligible probability of decryption ambiguity due 
to the zero expectation of the dimension of the intersection of the kernels of 
Lij . Furthermore, recall that we have at least n degrees of freedom over k in 
selecting f0 and f1 for any choice of Lij . Thus the Kipnis-Shamir attack, which 
is exponential in the Q-rank of the scheme, is trivially thwarted with simple 
parameter restrictions, though we note that the lack of such restriction on the 
rank of Lij in [11] is apparently an oversight. 

5.5 Equivalent Keys 

In [32], the question of the number of equivalent keys for multivariate cryptosys-
tems is explored. This question is quite relevant for ZHFE, as well, since there 
can clearly be multiple private keys allowing one to decrypt a public key. The 
danger in this vein would be if there is insufficient entropy in public keys due to 
massive redundancy in private keys. 

To analyze the number of equivalent keys, we first determine the number of 
possible pairs f0, f1 satisfying (1) for a fixed Ψ and Lij . As mentioned in Section 
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4, a map of the form Ψ has n2 coefficients over k, and due to the degree bound 
2only s of these can be nonzero. Thus with Lij fixed, we have n + n unknown 

2coefficients for f0 and f1 over k, and so we have n + n − (n2 − s) = n + s degrees 
of freedom in choosing the pair f0, f1 for a fixed private key. 

Next we consider the same relation with f0, f1 fixed. For specificity, letP 
fi(x) = q v +q w 

. Given the existence of Lij and Ψ , we have the 0≤v≤w<n αivwx
relation 

1 n−1XX X i v+i w+iq +q +1Ψ(x) = l0tiα
q xtvw

t=0 i=0 0≤v≤w<n 
(7)

1 n−1XX X i v+i w+iq +q +q+ l1tiα
q x ,tvw

t=0 i=0 0≤v≤w<n 

where lijl are the unknown coefficients of the linearized polynomial form of Lij . 
There are implicitly n2 − s linear relations on the 4n unknown coefficients of 
Lij , as well as the rank restrictions on these maps; thus, for n > 4 we expect an 
unique solution, and thus an unique Ψ as well. 

Given a public key, there is a fixed relationship P = T (f0||f1)U . We note 
that different choices of T can be accommodated by different choices of Lij by 
(3). In contrast, statistically there is only one selection of U which maintains 
the structure of the key. Thus M(f0||f1), Lij (M −1)i, Ψ form distinct equivalent 
private keys for all invertible M . One can see this result as indicating that the 
security of ZHFE is more closely related to the IP1S problem than the IP 
problem. 

24nWe therefore have roughly q equivalent private keys for any given public 
5nkey. Since there are q

2+sn possible choices of private keys, there are on the order 
2n +snof q nonequivalent public keys. Consequently, there is sufficient entropy in 

public keys. 

6 ZHFE Key Modification, ZHFE− 

6.1 Design 

As mentioned in the previous section, there are many degrees of freedom in 
selecting f0 and f1, even when Ψ and Lij for (i, j) ∈ {0, 1}2 are fixed. These 
facts naturally lead to the question of whether it is possible to develop a “minus” 
modification of ZHFE preserving the essential injectivity of the original scheme. 

Analogous to the analysis in the last section, we compute the degrees of 
freedom in selecting f0 and f1 when the Lij for (i, j) ∈ {0, 1}2 are fixed and 
when the degree bound for Ψ is fixed. Because we are decreasing the dimension 
of f0 or f1 or both, we compute over Fq. 

2Recall from section 5 that there are n possible nonzero coefficients of a 
cubic polynomial of the form of Ψ over k, and that with only the degree bound 
restriction, n2 − s of these must be zero. Expressing this fact over Fq , we see 



12 Daniel Smith-Tone 

that there are n3 − sn linear constraints. Considering the maps Li,j to be of 
corank c, we require an additional 2cn−2n relations to be satisfied, for a total of 
n3 −sn+2cn−2n linear constraints. Allow the total combined output dimension � � � � 

n n+1of f0 and f1 over Fq to be n + t. Since there are + n = homogeneous2 2� � 
n+1quadratic monomials in each coordinate, there are (n + t) coefficients in 2 

our linear system. � � 
n + 1 

(n + t) ≥ n 3 − sn + 2cn − 2n 
2 

(n + 1)t ≥ n 2 − n − 2s + 4c − 4. 

For realistic values of s, it is possible to get t as low as n − 2, and n − 1 is always 
possible. Thus we consider removing two public equations. For symmetry and 
simplicity, we choose to remove one coordinate from each of f0 and f1, making 
them both maps from Fnq to Fn−1 .q 

Remark 1 This technique makes ZHFE− much more similar to small field 
schemes. The central map is no longer defined as a pair of maps over the exten-
sion field. 

Generation of the central map proceeds exactly as in ZHFE, with the ex-
ception that the linear maps Lij are now representable as n × (n − 1) matrices 
with entries in Fq. As with ZHFE we identify the image of Lij with k to obtain 
relation (1). 

Inversion of the central map proceeds exactly as with ZHFE. Now since 
both f0 and f1 map into a smaller space, there is a possibility of decryp-
tion failure beyond that of ZHFE. Under the heuristic that f0 and f1 are 
random quadratic maps from Fn to Fn−1, one computes the probability that q q 

2−2nf0(y)||f1(y) = f0(x)||f1(y) for a fixed x to be q . While f0 and f1 are not 
random, we expect this quantity to be correct, and therefore the probability of 
decryption failure is increased by q2−2n. Assuming parameters similar to ZFHE, 
this probability is roughly 2−300, which is well within reason. 

6.2 Analysis 

The differential analysis from the previous section carries over nearly verbatim 
to the case of ZHFE− . In particular, the 3-tensor structure of the differen-
tial remains essentially the same, though over a slightly diminished space. We 
therefore conclude that ZHFE− is as secure as ZHFE against a differential 
symmetric or invariant attack. 

Further, the degree of regularity of a subset of a system of relations is bounded 
below, as noted in [22], by the degree of regularity of the entire system. Thus, in 
comparison with any full rank ZHFE scheme of the same Q-rank, the degree 
of regularity is at least as high, and so once again the resistance to algebraic 
attacks and attacks in the Kipnis-Shamir model is reduced to Q-rank analysis. 

Unlike the differential security criteria, Q-rank is not monotone with respect 
to the composition of projections, a fact which can be seen by observing that 
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g(x) ∈ k[x], where k is an even degree n extension of Fq , defined by g(x) = 
n/22q 2x + x clearly has Q-rank 2, whereas the composition with the projection 

π(x) = xq
n/2 − x produces 

n/2 n/2 n/22q 2)q 2q 2)π(g(x)) = (x + x − (x + x 
n n/2 n/22q 2q 2q= x + x − x − x 2 = 0. 

This strange result is due to the fact that g(x) maps into a subfield L of k of 
degree n/2 over Fq, and π is the minimal polynomial of L. To verify that this 
phenomenon does not preclude the use of the minus modifier, we find a bound 
on the reduction of Q-rank for ZFHE− . 

First, we note that all options for removing two equations are equivalent 
with respect to Q-rank. Therefore our specification that the dimension of each 
fi for i ∈ {0, 1} is reduced by one suffices for Q-rank analysis. In this case, the 
minus modifier projects fi onto a hyperplane. There is a basis in which this 
codimension one projection is given by π(x) = xq − x. Since Q-rank is invariant 
under isomorphism, we may take f̃  

i isomorphic to fi with respect to this basis. 
Relative to this basis we may view the operation of projection on the associ-

ated matrices to be raising each element to the power q, shifting one unit down 
and to the right, and subtracting the original, thusly: ⎡⎤⎡ ⎤ 

αq αqαq · · · n,n − α11 n,1 − α12 n,n−1 − α1,nα11 α12 · · · α1,n ⎢⎣ 
⎥⎦ = ⎢⎣ 

⎥⎦. . .. . . . . . . . . 
. . .. . . . . . . . . π . 

αq αqαn,1 αn,2 · · · αn,n n−1,n − αn,1 αn
q 
−1,1 − αn,2 · · · n−1,n−1 − αn,n 

We are assured that this operation does not reduce the rank by more than one 
and thus the Q-rank of the public key is reduced by at most two. Since we 
can control the Q-rank via selection of Lij , we conclude that ZHFE− is secure 
against the Kipnis-Shamir minrank attack. 

6.3 Suggested Parameters 

In this section we propose practical parameters for a realistic implementation of 
ZHFE−. Since the most costly operations, encryption and decryption, utilize 
algorithms identical to those of ZHFE, and due to the tightness between the 
security analyses of the two schemes, we recommend parameters similar to those 
of the original scheme. 

In an earlier version of this manuscript, we suggested as a parameter set 
(q, n, D, r, c) = (7, 55, 105, 2, 6), where q is the size of the base field, n is the degree 
of the extension k over Fq, D is the degree bound for Ψ (in this case 105 = 2∗72 + 
7), r is the number of equations removed, and c is the corank of the parameters 
Lij , having non-intersecting kernels. In discussions with the authors of [33], it 
became apparent that we overlooked the added restrictions from insisting on 
corank 6 matrices Lij . Furthermore, we may have been overcautious about the 
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risk of the Q-rank property of ZHFE. Any linear system derived from the Q-
rank property is inherently overdefined, and so we dare to be more aggressive. 
Based in part on their analysis, we propose new parameters for our scheme: 

108 − ZHFE− : (q, n, D, r, c) = (7, 55, 393, 2, 3). 

The experiments of the authors of [33] support the viability of these parameters 
while retaining the significant advance in key generation efficiency even in the 
minus case. 

These parameters correspond to a public key Q-rank of approximately 6, 
and a degree of regularity of 9 (est.). Given the overdefined nature of the Q-rank 
attacks and the above analysis verifying resistance to all other known attacks, we 
conclude that these parameters achieve a security level greater than 80 bits. The 
performance and security data are essentially the same as the original scheme 
with Lij of the same moderate corank, 3. 

The main differences between ZHFE− and its progenitor with the same 
parameters is key size and encryption time. Since a plaintext is in F55, its length 7 
is 165 bits. The ciphertext lies in F2∗55−2 and is thus 324 bits in length. Thus the 7 
public key size is determined by the storage requirements of 108 equations in 55 
variables over F7. This quantity is roughly 63.1K. In comparison, the public key 
size of 110 − ZHFE(7, 55, 105, 6) is 64.3K, which is about 2% larger. Finally, 
since ZHFE− has about 2% fewer public equations than ZHFE, encryption is 
about 2% faster. 

7 Conclusion 

For many years, multivariate cryptography has had effective tools for building 
secure and efficient post-quantum signature schemes, but has had much less 
success for encryption. New schemes such as ZHFE and ABC are promising 
candidates to fill that gap. Nonetheless, being trapdoor constructions, these 
schemes can only be trusted after a detailed security analysis. 

This work provides much of the security analysis needed to establish trust 
in the ZHFE construction. In addition to the existing analysis of the difficulty 
of applying direct algebraic attack to ZHFE, we analyze the scheme’s security 
against differential attacks, specify parameters precluding rank attacks, and ver-
ify resistance to IP-based equivalent-key attacks. This analysis serves to elucidate 
the structure of the ZHFE public key, but does not break the cryptosystem, 
reinforcing the likelihood that the scheme is indeed secure. 

The elucidation of the structure of ZHFE also allows us to propose the mod-
ified scheme ZHFE−. ZHFE− modifies the core map of ZHF E and thereby 
reduces its key size, while still remaining secure with respect to the attacks an-
alyzed above. While the reduction in key size is relatively small, it opens up the 
possibility of using Ding’s idea of constructing an injective multivariate encryp-
tion map whose codomain is much larger than its domain, without requring the 
dimension of the codomain to exceed that of the domain by a factor of two or 
more, as do all existing schemes that use this approach. 
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