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Abstract. Multivariate Public Key Cryptography (MPKC) has been 
put forth as a possible post-quantum family of cryptographic schemes. 
These schemes lack provable security in the reduction theoretic sense, 
and so their security against yet undiscovered attacks remains uncertain. 
The effectiveness of differential attacks on various field-based systems 
has prompted the investigation of differential properties of multivariate 
schemes to determine the extent to which they are secure from differ-
ential adversaries. Due to its role as a basis for both encryption and 
signature schemes we contribute to this investigation focusing on the 
HFE cryptosystem. We derive the differential symmetric and invariant 
structure of the HFE central map and that of HFE− and provide a 
collection of parameter sets which make these HFE systems provably 
secure against a differential symmetric or differential invariant attack. 

1 Introduction and Outline 

Along with the discovery of polytime quantum algorithms for factoring and com-
puting discrete logarithms, see [1], came a rising interest in “quantum-resistant” 
cryptographic protocols. For the last two decades this interest has blossomed 
into a large international effort to develop post-quantum cryptography, a term 
which elicits visions of a post-apocalyptic world where quantum computing ma-
chines reign supreme. While progress in quantum computing indicates that such 
devices are not precluded by the laws of physics, it is not at all clear when 
we may see large-scale quantum computing devices becoming a cryptographic 
threat. Nevertheless, the potential and the uncertainty of the situation clearly 
establish the need for secure post-quantum options. 

One of a few reasonable candidates for security in a quantum computing 
world is multivariate cryptography. We already rely heavily on the difficulty 
of inverting nonlinear systems of equations in symmetric cryptography, and we 
quite reasonably suspect that that security will remain in the quantum paradigm. 
Multivariate Public Key Cryptography (MPKC) has the added challenge of re-
sisting quantum attack in the asymmetric setting. 
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While it is difficult to be assured of a cryptosystems’s post-quantum secu-
rity in light of the continual evolution of the relatively young field of quantum 
algorithms, it is reasonable to start by developing schemes which resist classical 
attack and for which there is no known significant weakness in the quantum 
realm. Furthermore, the establishment of security metrics provide insight which 
educate us about the possibilities for attacks and the correct strategies for the 
development of cryptosystems. 

In this vein, some classification metrics are introduced in [2, 3] which can 
be utilized to rule out certain classes of attacks. While not reduction theoretic 
attacks, reducing the task of breaking the scheme to a known (or often suspected) 
hard problem, these metrics can be used to prove that certain classes of attacks 
fail or to illustrate specific computational challenges which an adversary must 
face to effect an attack. 

Many attacks on multivariate public key cryptosystems can be viewed as 
differential attacks, in that they utilize some symmetric relation or some invari-
ant property of the public polynomials. These attacks have proved effective in 
application to several cryptosystems. For instance, the attack on SFLASH, see 
[4], is an attack utilizing differential symmetry, the attack of Kipnis and Shamir 
[5] on the oil-and-vinegar scheme is actually an attack exploiting a differential 
invariant, even Patarin’s initial attack on C∗ [6] can be viewed as an exploita-
tion of a trivial differential symmetry, see [3]. These attacks are evidence that 
the work in [2, 3] is worthy of continuation and further development. 

This task leads us to an investigation of the HFE family of schemes, see 
[7], and a characterization of the differential properties of some variants. Results 
similar to those of [2, 3] will allow us to make conclusions about the differential 
security of HFE-derived schemes, and, in particular, provide some insight into 
the properties of some of its important variants such as HFE− and HF Ev− , 
see [8] and [9]. 

To this end, we derive the differential symmetry and differential invariant 
structure of the central map of HFE. Specifically, we are able to bound the 
probability that an HFE or HFE− primitive has a nontrivial differential struc-
ture and to provide parameter sets for which these schemes are provably secure 
against a restricted differential adversary. This result on the HFE and HFE− 

primitives, in conjunction with degree of regularity results such as [10, 11] pro-
vide a strong argument for the security of the HFE− and HF Ev− signature 
schemes, though more work is required to verify that the differential structure 
is not weakened by the vinegar modifier for practical parameters. 

We note explicitly that the provided proof of security against a differential 
adversary for HFE is not an endorsement of HFE, a scheme thoroughly broken 
in [12, 13]. The proof indicates that HFE cannot be broken by “differential 
means.” The attack of [12] is a decidedly “rank” attack, referring to the fact 
that it relies heavily and necessarily on rank analysis. Furthermore, since rank 
methods have remained ineffective in breaking the general HFE− and HF Ev− 

schemes, the proofs provided for parameter sets of HFE− schemes have greater 
significance. 



3 Differential Properties of the HFE Cryptosystem 

The paper is organized as follows. First, we describe the notion of a differen-
tial adversary and discuss differential security. We then recall the HFE scheme 
from [7] and some of its history. In the following section, we examine linear dif-
ferential symmetric relations for both the HFE and HFE− schemes, deriving 
parameters to ensure the non-existence of such relations. We next review the 
notion of a differential invariant and a method of classifying differential invari-
ants. We continue, analyzing the differential invariant structure of the HFE 
and HFE− systems and providing parameters precluding the existence of a 
nontrivial differential invariant in the general case. Finally, we conclude, noting 
parameters which provide provable differential security. 

2 The Differential Adversary 

The discrete differential of a field map f : Fn
q → Fq

m is given by: 

Df(y, x) = f(x + y) − f(x) − f(y) + f(0). 

It is simply a normalized difference equation with variable interval. Several 
prominent cryptanalyses in the history of MPKC have utilized a symmetric 
relation of the discrete differential of the core map or subspaces which are left 
invariant under some action of the differential of the core map. Simple exam-
ples include the linearization equations attack of [7], which can be viewed as 
exploiting the relation Df(f(x), f(x)) = 0; the attack on balanced Oil-Vinegar, 
see [14, 5]; and the SFLASH attack of [4]. Along with rank attacks, differential 
attacks have made the greatest impact on MPKC among structural key recovery 
attacks. 

For the purpose of progress in security analysis in MPKC, we propose a 
model for a differential adversary. This model strives to capture the behaviors 
employed in all differential attacks and will hopefully be improved with time. 

We will say that a restricted differential adversary A is a probabilistic Turing 
machine with access to a public key P which computes either 

1. an affine map L such that DP (Ly, x) + DP (y, Lx) = ΛLDP (y, x), or 
2. a pair of subspaces V and W with dim(V ) + dim(W ) ≥ n the number of 

variables, such that DP (y, x) = 0 for all x ∈ V and y ∈ W , 

and uses the solution to derive an equivalent private key. 
An unrestricted differential adversary A is a probabilistic Turing machine 

with access to a public key P which computes either 

1. a subspace Z ⊆ Fm of dimension at least two where m is the number of public q 
equations and an affine map L such that A(Ly, x) + A(y, Lx) = ΛLA(y, x)Pm−1
for all A = ziDPi where (z0, z1, . . . , zm−1) ∈ Z, i.e. A ∈ SpanZ (DPi),i=0 
or 

2. a subspace Z ⊆ Fm of dimension at least two and a pair of subspaces Vq 
and W with dim(V ) + dim(W ) ≥ n the number of variables, such that 
A(y, x) = 0 for all x ∈ V , y ∈ W , and A ∈ SpanZ (DPi), 
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and uses the solution to derive an equivalent private key. 
We note here a few things. Item number two in the definition of the un-

restricted differential adversary has no meaning if the subspace Z is one di-
mensional. The significance of the subspace Z is that it allows the unrestricted 
differential adversary to target subspaces of the span of the public polynomials 
which were constructed in different ways, having different differential properties, 
see [15] for a particular example of such an attack. A proof of security against 
an unrestricted differential adversary is very challenging, however there is little 
interest in the distinction between an unrestricted differential adversary and a 
restricted differential adversary if the private polynomials of a scheme were not 
constructed with different methods, since trivial structure for proper subspaces 
Z is a generic property. 

In the case of the restricted differential adversary it specifically suffices to 
prove that a core map f has no such L and no such (V, W ) to guarantee that the 
restricted differential adversary’s advantage for the cryptosystem with primitive 
f is zero. Item 1 of the restricted differential adversary above is discussed in 
more detail in Section 5 and item 2 in Section 6. 

3 Useful Background Algebraic Results 

For completeness, we present a collection of useful propositions and definitions 
which make the later proofs more streamlined. 

Proposition 1. If A, B are two m × n matrices, then rank(A) = rank(B) if 
and only if there exist nonsingular matrices C, D, such that A = CBD. 

Proof. Let A be an m×n matrix of rank r. With row operations (P, m×m) we can 
get A into row echelon form, PA. Then we can use column operations (Q, n × n) 
to “zero-out” the remaining nonleading elements and permute the leading 1’s 
to the first r columns. Thus P AQ is the m × n matrix with the r × r identity 
matrix in the upper-left region, and zeros everywhere else. Denote this matrix 
as I 0. Thus P AQ = I 0. We can also do this with B, so that P 0BQ0 = I 0 = P AQ. 
Thus A = (P −1P 0)B(Q0Q−1), with P −1P 0 and Q0Q−1 nonsingular. 

From this point forward we fix a finite field Fq and a finite extension K of 
degree n. 

Definition 1. We define the minimal polynomial of a subspace V ⊆ K as Y 
MV (x) = (x − v) 

v∈V 

The term “minimal polynomial” is used since this is the polynomial of minimal 
degree of which every element of V is a root. We note that the equation MV (x) = 
0 is an Fq-linear equation. 

dSuppose that V has Fq-dimension d, so that |V | = q . Then MV (x) has 
degree qd and must have the form 

d d−1 2 q q q qx + bd−1x + · · · + b2x + b1x + b0x bi ∈ K (1) 
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Proposition 2. Let T : K → K be an Fq -linear map. Let π : K → K be defined 
by πx = Mker(T )(x). There exists a nonsingular Fq -linear map T̃ : K → K such 

˜that Tx = T πx. 

Proof. Clearly, π is an Fq-linear map. Also clear is the fact that ker(π) = ker(T ). 
Since π and T are additive homomorphisms, each is constant on cosets of the 
kernel. Therefore we may define T̃ x = Tπ−1(x) where π−1(x) is the preimage of 
x (a coset of the common kernel) under π. Evidently, T̃ is well-defined. Finally, 
T̃ π(x) = Tπ−1(πx) = T (x + ker(T )) = Tx. 

In addition, we can characterize all functions from V to K (analogous to the 
coordinate ring K[x]/ hMV (x)i): 

Proposition 3. Let FV be the ring of all functions from the Fq-subspace V of 
K to K. Then FV is isomorphic to K[x]/ hMV (x)i. � 

qProof. The ring of all functions from K to itself is K[x]/ x
n − x . Suppose � 

qthat f, g ∈ K[x]/ x
n − x are identical on V . Then for all v ∈ V , v is a root 

of (f − g)(x). Thus (x − v) is a linear factor of (f − g)(x) for all v ∈ V . Thus 
MV (x)|(f − g)(x). Consequently, hMV (x)i is the ideal of functions which send � 

qV to zero. Thus K[x]/ x
n − x, MV (x) is the ring of nontrivial functions from 

qV to K. Since MV (x) splits in K, MV (x)|x
n − x. To see that all functions 

n)qfrom V to K are polynomials note that there are (q
d 
functions from V (of 

Fq-dimension d) to K, and |K[x]/ hMV (x)i | = (qn)q d 
. 

4 HFE 

The Hidden Field Equations (HFE) scheme was first presented by Patarin in [7] 
as a method of avoiding his linearization equations attack on the C∗ scheme of 
Matsumoto and Imai, see [6] and [16]. The basic idea of the system is to use the 
butterfly construction to hide an easily invertible polynomial over an extension 
field. 

More specifically, let Fq be a finite field and let K be a degree n extension 
of Fq. Given an easily invertible “quadratic” map f : K → K, quadratic in 
the sense that f is a sum of products of pairs of Fq-linear functions of x, one 
constructs a system of quadratic formulae over Fq by composing two Fq -affine 
transformations T,U : K → K thusly, P = T ◦ f ◦ U , and then expressing the 
composition over the base field, Fq. Explicitly any such “core” map f has the 
form: X i j X i q +q qf(x) = αi,j x + βix + γ, 

i≤j i 
ii j q <Dq +q <D 

with the degree bound D established to allow for easy inversion. 
To encrypt given the public key P (x), one simply evaluates every public 

polynomial at the plaintext vector x ∈ Fn ≈ K. Decryption is accomplished by q 
inverting each of the three private components individually. The most interesting 
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inversion is that of f , which is inverted via a polynomial system solver such as 
the Berlekamp algorithm. 

In [7], Patarin presented a couple of HFE challenges to be used as bench-
marks for progress in cryptanalyzing HFE and HFE− . HFE challenge 1 was 
broken in 2003, see [17], via an algebraic attack which allows the direct inversion 
of the system of equations. This attack was specialized in the sense that it took 
advantage of the choices of the coefficients of f as well as the characteristic of 
Fq. 

In 2011, HFE was broken for all characteristics altogether in [12], in a vast 
improvement of the Kipnis-Shamir attack of [18]. The attack breaks the original 
HFE for all practical parameters as well as several variants, including projected 
HFE and Multi-HFE, by what amounts to a sophisticated rank analysis of 
the central map via the public polynomials. Notably, the attack can not break 
HFE− or HF Ev− . 

5 Linear Differential Symmetry 

5.1 Symmetry for HFE 

In [4], the SFLASH signature scheme was broken by exploiting a symmetric 
relation of the differential of the public key. This relation was inherited from 
the core map of the scheme. Specifically, a linear differential symmetry is an 
equation in which linear maps are applied to the differential in such a way that 
the equation is linear in the unknown coefficients of the linear maps. We can 
always express the symmetry in the following form: 

Df(My, x) + Df(y, Mx) = ΛM Df(y, x), (2) 

where M and ΛM are linear maps. To evaluate the potential for a differential 
symmetric attack on HFE, we consider conditions for the existence of a linear 
differential symmetry on the core map f of an HFE scheme. 

Consider the differential of the core map: X i j j i q q q qDf(y, x) = αi,j (y x + y ). (3)x
i≤j 

i jq +q <D 

Df is a K-bilinear form. We choose a convenient representation for K: ⎤⎡ 

x 7→ 
⎢⎢⎢⎣ 

x 
qx
. . . 
n−1 qx

⎥⎥⎥⎦ 
. 

Under this representation we can express Df as the n × n symmetric matrix 
with (i, j)th and (j, i)th entries αi,j for i 6= j and (i, i)th entry 2αi,i (which may 
be zero depending on the characteristic of K). 
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Since any linear map M : K → K can be written Mx = i=0 mix

q , under 
our representation M can be expressed: ⎤⎡ ⎢⎢⎢⎣ 

m0 m1 . . . mn−1 
q q qm m . . . mn−1 0 n−2 
. . .. . . . . . . . . 
q n−1 q n−1 q n−1 

m m . . . m1 2 0 

⎥⎥⎥⎦ 
M = . 

In this representation, we have the formula 

Df(My, x) + Df(y, Mx) = y(MT Df + DfM)x. (4) Pn−1 
λkDf(y, x)q k 

k=0 . Notice Consider the action of ΛM on Df . ΛM Df(y, x) = 

specifically that in our representation the matrix for Dfq k 
is the same as the 

matrix representing Df shifted to the right and down k units with all entries 
raised to the qkth power. This shift is due to the fact that X kk i+k j+k j+k i+k 

αq 
i,jDf(y, x)q = q q q q(y ).+ yx x

i≤j 
i jq +q <D 

Specifically, the (i, j)th entry of Dfq k 
is αq k 

if i 6 j, and (i, i)th entry = i−k,j−k 

(2αi−k,i−k)
q k 

= 2αq k 

(0 in characteristic two). i−k,i−k 
Thus the possibility of a differential symmetry can be deduced simply by 

setting the matrix MT Df + DfM equal to the matrix ΛM Df . With certain 
constraints it is easy to deduce whether there exists a solution. 

Theorem 1 Let f(x) be an HFE polynomial (in particular f is not a monomial 
function). Suppose that f has the following properties: 

1. no power of q is repeated among the exponents of f , and 
2. the difference of the powers of q in each exponent is unique. 

Then f has no nontrivial differential symmetry. 

Proof. First consider computing DfM . From the condition on the monomials 
of f , Df has at most a single nonzero entry in any row or column. Therefore 

i j

each row of DfM is a multiple of a row in M . In particular, if αi,j x
q +q is a 

monomial of f , then the ith row of DfM is ih 
j j jq q q. . . αi,j m ,αi,j m−j αi,j m1−j −1−j 

and the jth row is h 
i i i q q q .αi,j m αi,j m . . . αi,j m−i 1−i −1−i 

i 
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Fig. 1. Graphical representation of the equation MT Df +DfM = ΛM Df for the HFE 
i j r s q +q q +qpolynomial f(x) = αi,j x + αr,sx . Horizontal and vertical lines represent 

nonzero entries in MT Df + DfM while diagonal lines represent nonzero entries in 
ΛM Df . Solid lines correspond to the (i, j) monomial while dotted lines correspond to 
the (r, s) monomial. 

Consider the ith row of MT Df +DfM . For all k not occurring as a power of q in 
qf , the (i, k)th entry is αi,j mk

j 

−j . Consider the (i, j)th entry of MT Df + DfM . 
This quantity is the sum of the (i, j)th entry of DfM and the (j, i)th entry, 

i j sq q q +qspecifically αi,j (m + m ). Let αr,sx
r 

be another monomial of f . Then the 0 0 
q q(i, r)th entry of MT Df + DfM is αi,j m
j s 

, and the (i, s)th entry is r−j + αr,smi−s
j r q qαi,j ms−j + αr,sm .i−r 

In ΛM Df , for all αi,j x
q i +qj 

a monomial in f , the (i + k, j + k)th entry is 

equal to the (j + k, i + k)th entry and takes the value αq k 

λk while all other i,j 
entries are zero. 

Therefore consider the elements in the ith row of the equation MT Df + 
DfM = ΛM Df . For every monomial αr,sx

q r +q s 
in f , we have that the s−r+ith 

element and the r − s + ith element of row i in ΛM Df are nonzero. All other 
entries of that row are zero. Therefore, for all k not occurring as a power of q 
in f or as a difference of the powers of q in an exponent of a monomial in f 
plus i, mk−j = 0. Given the condition that the differences of powers of q in the 
exponents are unique, and the equations mk−t = 0 for all other t occurring as 
powers of q, we obtain mi = 0 for all i 6= 0. Therefore M is a multiplication map. 
But as proven in Theorem 2 in [19], if m0 6∈ Fq this implies that the polynomial 
is a C∗ monomial, a contradiction. Thus M is simply multiplying by a scalar 
which induces a symmetry for every map g : K → K. Thus f has no nontrivial 
differential symmetry. 
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5.2 Symmetry for HFE− 

We can extend the result of the previous section to reveal the differential sym-
metric structure of HFE−. The specific difference in the proof is merely placing 
the operator π, a projection on to a subspace, in (4). � � 

π MT Df + DfM = ΛM [Df ] . (5) 

We handle the general case of a codimension r projection explicitly. 

Theorem 2 Let K be a prime extension of Fq and let π : K → K be a codimen-
sion r projection. Let f : K → K be a nontrivial HFE polynomial with degree 
bound D < qn/2, let Pf be the multiset of powers of q occurring in the exponents 
of f , and let Sf be the multiset of differences of the powers of q in the exponent 
of each monomial summand of f . Suppose that f has the following properties: 

1. Pf is a set, 
2. Sf is a set, and 
3. for all i ∈ Pf the Lee distance between (i + Sf ) \ Pf and Pf is at least r +1. 

Then if D(π ◦ f)(My, x)+ D(π ◦ f)(y, Mx) = ΛM Df(y, x), then Mx = m0x for 
some m0 ∈ Fq. Thus π ◦ f has no nontrivial differential symmetry. 

s

i

r

ji r s

j

� � 
MTFig. 2. Graphical representation of the equation π Df + DfM = ΛM Df for the 

i j r s 2 q +q q +q qHFE polynomial f(x) = αi,j x +αr,sx , where πx = ax+bxq +x . Horizontal � � 
MT 

represent nonzero entries in ΛM Df . Solid lines correspond to the (i, j) monomial while 
dotted lines correspond to the (r, s) monomial. 

and vertical lines represent nonzero entries in π Df + DfM while diagonal lines 

Proof. Due to the effect of T and by Proposition 2, we may without loss of P br qgenerality assume that πx = with ar = 1. Therefore, the matrix form � � b=0 abx
of π MT Df + DfM is easily derived from the matrix form of MT Df + DfM . 
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The action of raising to the power of q results in each element of the matrix 
raised to the power of q and transposed one row down and one column to the 
right. 

Let αi,j x
q i+qj 

be a monomial summand of f . We observe that the (i, k)th� � 
entry of π MT Df + DfM for k 6∈ Pf ∪ (1 + Pf ) ∪ · · · ∪ (r + Pf ) ∪ (i + Sf ) is 

j 

mq while the corresponding entry of ΛM Df is zero. Therefore mk = 0 for all k−j 
k ∈ (−j +Pf )∪(1−j +Pf )∪· · ·∪(r −j +Pf )∪(i−j +Sf ). The remaining entries � � qj qj+1 

of π MT Df + DfM produce the relations 2mi−j = 0, m + m = 0, i−j+1 i−j−1 
and so on corresponding to the (i, k)th entry for k ∈ Pf ∪ (1 + Pf ) ∪ · · · ∪ (r + 
Pf ) ∪ (i + Sf ). From these we derive that mk = 0 for all k 6∈ (i − j + [Sf ∪ {0}]). 

By symmetry, we have that mk = 0 for all k 6∈ (r − s + [Sf ∪ {0}]) for all 
monomial summands αr,sx

q r +q s 
. We search for an element g ∈ Zn where n is 

prime by hypothesis such that g is in every such set. Since for every a ∈ Sf we 
have that −a ∈ Sf , a necessary condition is that Sf is closed under addition 
by g. Since every nonzero g is a generator of Zn, we must have that g = 0, 
since otherwise we contradict the fact that D < qn/2. Thus Mx = m0x, and we 
may apply Theorem 2 from [19] in the case m0 6∈ Fq to conclude that π ◦ f is 
a quadratic monomial map. Since f is a nontrivial HFE polynomial, we have 
that m0 ∈ Fq. 

We note that the conditions of the above theorem are very easy to check, 
though for very small D they may be difficult to satisfy and there may be 
some issues regarding a lack of entropy in the private key space. With proper 
selection of the extension, however, it is unlikely that this adjustment will lead to 
a successful attack based on the morphism of polynomials problem, in a similar 
vein to [20]. 

6 Differential Invariants 

The discrete differential Df is a symmetric, bilinear function on Fn (using the q 
vector space representation of K), but each coordinate of Df is a symmetric, 
bilinear form on K. Because of this, we may express each coordinate of Df , 
[Df(y, x)]i as 

[Df(y, x)]i = y T Dfix. 

Maintaining our definitions of K and f , we define a “first order differential 
invariant” of f . 

Definition 1 Let f : K → K be a function. A differential invariant of f is a 
subspace V ⊆ K with the property that there is a subspace W ⊆ K such that 
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq (Dfi), AV ⊆ W . 

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension 
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects 
when large subspaces are acted upon linearly. 
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If we assume the existence of a first order differential invariant V , we can 
define a corresponding subspace V ⊥ as the set of all elements x ∈ K such that 
the dot product hx, Avi = 0 ∀v ∈ V, ∀A ∈ Span(Dfi). This is not quite the 
usual definition of an orthogonal complement. V ⊥ is not the set of everything 
orthogonal to V , but rather everything orthogonal to AV , which may or may 
not be in V . 

With our definitions of V and V ⊥ , we can establish the following useful 
result. Assume there is a first order differential invariant V ⊆ K, and pick a 
linear projection M : K → V and another linear projection M⊥ : K → V ⊥ . 
Examining one of the differential coordinate-forms, 

[Df(M⊥y, Mx)]i = (M ⊥ y)T (Dfi(Mx)) (6) 

Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that 

[Df(M⊥y, Mx)]i = (M⊥ a)T (Dfi(Mx)) = 0 (7) 

The “i” in Dfi did not matter, meaning that for all i (from 1 to n), i.e. for all 
coordinates of Df , the above equation is true. We can then simply say that: 

∀y, x ∈ K, Df(M⊥y, Mx) = 0 or equivalently, Df(M⊥K,MK) = 0 (8) 

This fact will restrict what M and M⊥ can be. 
We can make our investigation of M, M⊥ easier by employing Proposition 

1. Our idea is to express M⊥ = SMT , where S may be singular, but T is 
nonsingular (or vice versa if rank(M) < rank(M⊥)). 

Without loss of generality, due to the symmetry of Df , we may assume that 
rank(M⊥) ≤ rank(M). If the ranks are equal, then we may apply Proposition 
1 and write M⊥ = SMT , with S and T nonsingular. If rank(M⊥) < rank(M), 
compose M with a singular matrix X so that rank(XM) = rank(M⊥), and then 
apply the result so that M⊥ = S(XM)T . Then we can express M⊥ = S0MT , 
where S0 is singular. The matrix T is included to ensure that the kernels of 
M, M ⊥ are properly aligned. Restating our differential result (8) in this manner, 
we have that if M⊥ = SMT , and M : K → V , then 

∀x, y ∈ K, Df(SMT y, MT x) = 0 (9) 

7 Differential Invariant Structure 

7.1 HFE 

If f has non-trivial invariant V we know that ∀A ∈ Span(Dfi), dim(AV ) ≤ 
dim(V ). Since the dot-product is non-degenerate on K, and remembering that 
V ⊥ is defined slightly differently, we can say dim(V ⊥)+dim(AV ) = n. This fact 
implies that dim(V ⊥)+dim(V ) ≥ n, so either dim(V ⊥) ≥ n/2 or dim(V ) ≥ n/2, 
possibly both. 
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If dim(V ) ≥ n/2, we maintain MT : K → V and characterize S : V → V ⊥. If 
we deduce S maps V to {0}, that is, V ⊥ = {0}, this would mean dim(AV ) = n 
and consequently AV = K. If V =6 K, we contradict dim(AV ) ≤ dim(V ), and if 
V = K, we contradict the non-triviality of V . 

If dim(V ⊥) ≥ n/2, we take M 0T 0 : K → V ⊥ instead and characterize S0 : 
V ⊥ → V . If S0 is the zero map on V ⊥, i.e. S0V ⊥ = V = {0}, then we contradict 
the non-triviality of V . 

Without loss of generality we assume dim(V ) ≥ n/2 because the following 
analysis and results can be achieved just as easily if we have dim(V ⊥) ≥ n/2. 

For notational convenience, we now fix MTx = x̂, MTy = ŷ, MT K = V , 
and d = dim(V ). Starting with the core map X Xi j i q +q qf(x) = αi,j x + βix + γ, 

i≤j i 
ii j q <Dq +q <D 

we compute: h iX i j j i 

Df(S ̂ x) = αi,j (Sŷ)q ˆ + (Sŷ)q x̂ . (10)y, ˆ xq q 

i≤j 
i jq +q <D 

For practical parameters, D is far smaller than |V |, see for example [7], and so 
for Df(Sy, ˆ x̂) = 0, every coefficient of x̂q

j 
must be in hMV (ŷ)i. Expanding (10) 

we obtain: h iX i j j iq q q qDf(S ̂ x) = αi,j y) x y) xy, ˆ (S ̂ ˆ + (S ̂ ˆ
i≤j 

i jq +q <D X h 
y)

q i 
i 

j 
(11) 

q= (αi,j + αj,i) (S ̂ x̂ , 
i,j 

i jq +q <D 

where we specifically note in the last expression that if i 6= j exactly one of αi,j 

and αj,i may be nonzero. Thus for each j such that qj < D we have the following 
polynomial: X 

y)q i 

(αi,j + αj,i)(S ̂ . (12) 
i:qi+qj <D 

The membership of the jth polynomial of the form (12) in hMV (ŷ)i provides 
the relation X i 

(αi,j + αj,i)(Sŷ)
q = 0. (13) 

i:qi+qj <D 

Relation (13) has ` = blogq(D)c degrees of freedom on S as a linear action 
on V . Therefore, there are d − ` Fq-linearly independent relations on S from a 
single monomial of (11). For a practically chosen D, two linearly independent 
relations of this form on S force S to be the zero map on V . Consequently, we 
have that V ⊥ = {0}, a contradiction. Specifically, the probability that two such 
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given relations are independent is approximately 1 − q−n`; thus with very high 
probability f has no differential invariant structure. 

In particular, we provide a specific strategy for provably eliminating differ-
ential invariants. 

Theorem 3 Let f be an HFE polynomial with degree bound D < qn/2. If there 
is a power of q which is unique, f has no non-trivial invariant structure. 

Proof. Assume by way of contradiction that f has a non-trivial differential in-
variant. Let j be the unique power of q occurring in an exponent in f . By the 
above discussion it suffices to analyze membership of the jth polynomial of the 
form (12) in hMV (ŷ)i. Given the condition on j, this polynomial has the form 
(αrj + αjr)(Sŷ)

q r 
. If this polynomial is in hMV (ŷ)i, then so is Sŷ, since MV (ŷ) 

has no repeated factors, and we have SV = {0}, a contradiction. 

7.2 HFE− 

Deriving the differential invariant structure for HFE− follows a nearly identical 
line of reasoning. The clear distinction is that since the definition of the differen-
tial invariant depends on the span of the differentials of the public polynomials, 
there is greater freedom to have an invariant when there are fewer public poly-
nomials. For specificity, we analyze the case in which a single public equation is 
removed, though importantly, a very similar though notationally messy analysis 
is easy to derive in the general case. 

Once again, considering the effects of T and Proposition 2, it suffices to 
analyze π ◦ f where πx = x + xq. Notice that we have: X Xi j i q +q qπ ◦ f(x) = αi,j x + βix + γ 

i≤j i 
ii j q <Dq +q <D X X (14)

i+1 j+1 i+1 

αq q +q βq q+ + + γq,i,j x i x
i≤j i 

ii j q <Dq +q <D 

and therefore, h iX i j j i q qD(π ◦ f)(Sy, ˆ x̂) = αi,j (Sŷ)q x̂ + (Sŷ)q x̂
i≤j 

i jq +q <D X h i (15)
i+1 j+1 j+1 i+1 q q+ αq (Sŷ)q x̂ + (Sŷ)q x̂ .i,j 

i≤j 
i jq +q <D 

Again, we may collect terms with respect to the powers of x̂, and obtain poly-
nomials in Sŷ. X jqD(π ◦ f)(Sy, ˆ x̂) = pj (Sŷ)x̂ . (16) 

j 
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Setting this quantity equal to zero, we see that a differential invariant is only 
possible when pj (Sŷ) ∈ hMV (ŷ)i for all j. Here we note that an equation of the 
form (16) occurs for any projection π, though the structure of the polynomials 
pj depend on the corank of π and the structure of f . 

Despite the added difficulty of the minus modifier, we can prove the nonexis-
tence of nontrivial differential invariants for HFE− under conditions very similar 
to those provided in the previous subsection. 

Theorem 4 Let f be an HFE polynomial with degree bound D < qn/2 . Let πP br qbe the codimension r projection πx = where ar = 1. If there is a b=0 abx
power k of q which is unique and k − 1, k − 2, . . . , k − r does not occur as a power 
of q in any quadratic monomial summand, π ◦ f has no non-trivial invariant 
structure. 

Proof. By the above condition, there is a power k such that the “coefficient” of 
x̂q k 

in (16) is pk. Moreover, the condition on k that k − 1, k − 2, . . . , k − r do 
not occur implies that pk is derived from a single summand in (15). Applying 
the argument from Theorem 3, we have that SV = {0}, and therefore there is 
no nontrivial differential invariant of π ◦ f . 

As an immediate corollary, we can derive a very easy condition for the nonex-
istence of nontrivial differential invariants for practical HFE− schemes. 

Corollary 1 Let f be an HFE polynomial with degree bound D < qn/2. If r < 
n/2 public equations are removed and the smallest power of q in any quadratic 
monomial summand of f occurs only once, the public key has no non-trivial 
differential invariant structure. 

Proof. Apply Theorem 4 with k the specified smallest power of q. 

It is easy to see that the result if also valid if we replace the word “smallest” 
by “largest.” Informally, the important condition is that logq (D) + r < n. 

8 IP, Degree of Regularity, Other Factors 

The restrictions suggested in Theorems 1, 2, 3, and 4 reduce the entropy of 
the private key space, which might raise concerns about vulnerability to attacks 
based on a “guess-then-IP” strategy, to direct inversion via Gröbner bases. As 
it turns out, for even modest parameters these issues are not realized. More-
over, the theorems are not “tight,” meaning that they are merely simple ways 
of eliminating differential symmetric and invariant weakness. Given a private 
HFE polynomial, one can check directly for conditions which guarantee the 
nonexistence of a differential symmetry or invariant. 

Consider, for example, using the parameter set for HFE Challenge 2; specifi-
cally, we have q = 16, n = 36, r = 4, and D = 4352 = 162 +163. Thus K = F1636 , 
and our HFE map must have the form : X X i q i+qj qf(x) = αi,j x + βix + γ 

i≤j≤3,i6 i≤3=3 
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We may choose α1,2 and α0,3 to be the only non-zero α, therefore we obtain 
the distinct powers of q Pf = {0, 1, 2, 3} and differences Sf = {−3, −1, 1, 3}. By 
Corollary 1, f has no nontrivial differential invariant structure. One may also 

4 3 2 q qconsider the system of equations arising from setting πx = x + ax + bxq + 
cxq + dx in (5). Using similar analysis as in Theorem 2, we derive that the only 
possible solution is when Mx = m0x for m0 ∈ Fq; therefore, f has no nontrivial 
differential symmetric structure and thus this instantiation of HFE− is secure 
against a restricted differential adversary. The private key space is reduced from 

13n 7ncontaining q HFE polynomials to only containing q such maps, though 
nqn(q − 1) of these may be seen to be equivalent keys (counting equivalence 

classes of keys intersected with polynomials of this form), via the additive and 
big sustainers of [21]. Therefore, there are roughly q5n nonequivalent polynomials 
with only α1,2 and α0,3 nonzero among the α. 

For weak parameters, in particular when the αi,j are chosen from the base 
field, an attack based on the IP problem is presented in [20]. The symmetries 
used in that method, however, are not present when both α1,2 and α0,3 are 
chosen randomly from K. While we may consider the coefficient of α1,2 to be 
“absorbed” by the affine map T , the effect of the remaining coefficient breaks 
the symmetry. Without the commutativity of the Frobenius map with the HFE 
polynomial, the parameters supplied are out of range for an IP-based attack. 

Another concern is that the rank of the scheme may be so low as to make 
the scheme susceptible to attack via Gröbner basis methods. However, using the 
theorem from [22], we compute the degree of regularity of the adjusted scheme 
to be: 

(16 − 1)4 
+ 2 = 32,

2 
based on the fact that the rank of the central map is only four. Using the formula 
from [23], we obtain an estimated complexity of � �ω

36 + 32 
32 

where ω = 2.3766. Thus, we estimate the complexity of directly inverting this 
concrete example to be O(2153). Note, the attack of [12] is not feasible here since 
this is an HFE− scheme, see section 8.1 in [12]. 

9 Conclusion 

For eighteen years, HFE has been studied, influencing cryptanalysis, symbolic 
computation, and the development of new cryptographic schemes. Though the 
original HFE scheme is broken for all practical parameters, as a platform for the 
development of various signature schemes, HFE has excelled, utilizing several 
modifiers to spawn new systems, some of which are leading candidates for secure 
post-quantum signatures. 

Our analysis contributes to the HFE legacy, elucidating the differential 
structure inherent to the core map. The results indicate that given practical 
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parameters, many HFE-derived systems lack non-trivial differential invariant 
structure. Further, we have established that with a simple choice of parameters 
we can provably eliminate non-trivial differential symmetric and invariant struc-
ture while maintaining security against attacks exploiting a diminished private 
key space. In particular, there is a parameter space for which HFE− is provably 
secure against a restricted differential adversary. 
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