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Abstract. A special metric of interest about Boolean functions is multiplicative
complexity (MC): the minimum number of AND gates sufficient to implement a
function with a Boolean circuit over the basis {XOR, AND, NOT}. In this paper we study
the MC of symmetric Boolean functions, whose output is invariant upon reordering of
the input variables. Based on the Hamming weight method from Muller and Preparata
(1975), we introduce new techniques that yield circuits with fewer AND gates than
upper bounded by Boyar et al. in 2000 and by Boyar and Peralta in 2008. We generate
circuits for all such functions with up to 25 variables. As a special focus, we report
concrete upper bounds for the MC of elementary symmetric functionsΣn

k
and counting

functions En
k

with up to n = 25 input variables. In particular, this allows us to answer
two questions posed in 2008: both the elementary symmetric Σ8

4 and the counting E8
4

functions have MC 6. Furthermore, we show upper bounds for the maximum MC in
the class of n-variable symmetric Boolean functions, for each n up to 132.

Keywords: symmetric Boolean functions, multiplicative complexity, upper bounds,
logic minimization.
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1. Introduction

Multiplicative complexity (MC) is an important characterizing property of Boolean
functions. The MC of a Boolean function is the minimum number of fan-in 2 multipli-
cations (AND gates) sufficient to implement the function by a Boolean circuit over the
basis (AND, XOR, NOT). The cost of various secure cryptographic implementations is
often proportional to the number of AND gates in Boolean circuits implementing the un-
derlying functions. This happens, for example, with the communication complexity of
zero-knowledge proofs and secure computation protocols, as well as with the amount
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of randomness required to implement certain protections against side-channel attacks.
Despite the importance of MC, it is often computationally infeasible to measure it for
arbitrary Boolean functions with a number of variables as small as seven.

In this paper we focus on symmetric Boolean functions, whose output is deter-
mined only by the Hamming weight of the input. Symmetric functions include several
fundamental subclasses [1]. They are relevant in diverse areas, such as cryptography
[2], logic circuit design [3,4] and sorting networks [5]. In particular, better efficiency
can stem from the use of symmetric Boolean functions, since they can be described
more succinctly than arbitrary Boolean functions. We devise new techniques that
enable us to obtain new upper bounds on MC, often tight, for symmetric Boolean
functions with a large number of variables. This is a step towards a more comprehen-
sive characterization of the MC of Boolean functions.

1.1. Previous work

Functions having symmetries among their input variables have more efficient imple-
mentations than those without symmetries [3]. In 1975, Muller and Preparata [5]
proposed the Hamming weight method to implement symmetric functions using a
circuit in two phases: the first phase computes the binary representation of the weight
of the input; the second phase finalizes the computation with a function of the concise
encoding of the weight. They also showed that it is possible to implement symmetric
functions with circuits of fan-in 2 gates having linear size and logarithmic depth.

Implementations with fewer AND gates are preferable in many applications, such as
secure multi-party computation (e.g., [6]), fully homomorphic encryption (e.g., [7]),
and zero-knowledge proofs (e.g., [8]), where processing AND gates is more expensive
than processing XOR gates. Also, the cost of some of the countermeasures against
side-channel attacks is related to the number of AND gates in the implementation.
For example, the complexity of higher-order masking schemes for S-boxes mainly
depends on the masking complexity, which is defined as the minimum number of
nonlinear field multiplications required to evaluate a polynomial representation of an
(n,m)-bit S-box over F2n [9].

The multiplicative complexity of Boolean functions is asymptotically exponential
in the number of input variables [10] and it is computationally difficult to calculate
even for a small number of variables [11]. Find et al. characterized the Boolean
functions with multiplicative complexity 1 and 2 [12]. The classification of functions
with respect to multiplicative complexity is known up to 6-variables [13,14].

Using the Hamming weight method, and upper bounds for the MC of Boolean
functions, Boyar et al. showed in 2000 that n-variable symmetric Boolean functions
do not require more than n+3

√
n AND gates. They also showed that all n-variable sym-

metric functions can be simultaneously computed using at most 2n− log2 n AND gates.
In 2008, Boyar and Peralta [15] showed that the multiplicative complexity of com-

puting the binary representation of the Hamming weight of n bits is exactly n− hw(n),
where hw(n) is the Hamming weight of the binary representation of n. Their paper
also showed that any symmetric function on seven variables has multiplicative com-
plexity at most eight. Boyar and Peralta presented the multiplicative complexity of
some of the important classes of symmetric functions, such as elementary symmetric
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(denoted Σn
k
) and (exactly-k) counting functions (denoted En

k
) for up to eight variables,

in which the multiplicative complexities of two specific functions Σ8
4 and E8

4 were left
as open problems [15]. A related question that remained unanswered was whether the
multiplicative complexity of Σn

k
is monotonic in k.

1.2. Our results

This paper improves the Hamming-weight method for constructing efficient circuits
for symmetric Boolean functions. This includes alternative methods of encoding the
Hamming weight, based on the arity and the degree of functions. It also includes
new techniques and insights on how to optimize the second phase of the computation.
Some results are further improved based on the computational ability to find MC-
optimal circuits for some functions with MC up to 6. Based on these techniques, we
provide new upper bounds, often tight, for the MC of a large number of symmetric
functions. As concrete contributions, we present upper bounds for:
– the MC of each elementary symmetric and counting function with up to 25 vari-

ables; in particular, we answer two open questions, by showing that the exact MC
of Σ8

4 and E8
4 is 6 (and providing concrete circuits), and that the MC of Σn

k
is not

monotonic in k;
– the maximum MC among the set of n-variable symmetric Boolean functions (Sn),

for each n up to 132; (e.g., any f ∈ Sn has MC smaller than n, for any n up to 21).
We also calculated upper bounds on the MC of all symmetric Boolean functions

with up to 25 variables, and as a summary present a table with the number of n-variable
functions found for each upper bound.

1.3. Organization

The remainder of the paper is organized as follows. Section 2 gives preliminary defi-
nitions and results about Boolean functions, symmetric functions and MC. Section 3
describes the Hamming weight method for constructing circuits for symmetric Bool-
ean functions. Section 4 explains the new techniques to improve MC upper bounds
and obtain concrete circuits with low number of AND gates. Section 5 includes re-
sults of the application of the techniques. Section 6 concludes with final remarks.
Appendix A shows upper bounds for the MC of concrete elementary-symmetric and
exactly-counting functions. Appendix B shows upper bounds for the maximum MC
within classes of fixed-arity symmetric functions.

2. Preliminaries

2.1. Boolean Functions

Let F2 be the finite field with two elements. An n-variable Boolean function f is a
mapping from Fn2 to F2. The arity of f is the number n of input variables. Bn is the
set of n-variable Boolean functions. There are #(Bn) = 22n such functions.
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The algebraic normal form (ANF) of a Boolean function f ∈ Bn is the multivariate
polynomial representation defined by

f (x1, . . . , xn) =
⊕
#»u ∈Fn2

a #»u x
#»u , (1)

where a #»u ∈ F2 and x
#»u = xu1

1 ∧ xu2
2 ∧ · · · ∧ xun

n is composed of the Boolean variables
xi for which ui = 1.

The degree of a monomial x
#»u is the number of variables appearing in that

monomial. The degree deg( f ) of a Boolean function f is the highest degree among
the monomials that appear in the ANF.

The truth table Tf of a Boolean function f is the list, lexicographically ordered
by the input vectors #»vi ∈ Fn2 , of the output values of f :

Tf = ( f ( #»v0), f ( #»v1), . . . , f ( #       »v2n−1)). (2)

2.2. Symmetric Boolean Functions

A symmetric n-variable Boolean function f has its output invariant under any permu-
tation of its input bits xi , i.e.,

f (x1, x2, . . . , xn) = f (xπ(1), xπ(2), . . . , xπ(n)), (3)

for all permutations π of {1,2, . . . ,n}. Sn denotes the set of n-variable symmetric
Boolean functions. There are #(Sn) = 2n+1 such functions.

The Hamming weight (HW), or simply weight, of a bit vector ®x is the integer
number hw(®x) of bits with value 1.

Since the output of a symmetric function f depends only on the weight of the input,
the function can be represented using the (n+1)-bit value vector w( f ) = (w0, . . . ,wn),
such that f (®x) = wi if hw(®x) = i.

The counting function En
k

is the n-variable symmetric Boolean function that out-
puts 1 if and only if the weight of the input is k. Any symmetric Boolean function
f ∈ Sn can be expressed as a sum of a unique subset of n-variable counting functions:

f (®x) = w0En
0 (®x) ⊕ w1En

1 (®x) ⊕ w2En
2 (®x) ⊕ · · · ⊕ wnEn

n (®x). (4)

The elementary symmetric function Σn
k

is the n-variable Boolean function com-
posed of all degree-k monomials, i.e.,

Σ
n
k (®x) =

⊕
1≤i1<...<ik ≤n

xi1 ∧ · · · ∧ xik . (5)

Any symmetric Boolean function f ∈ Sn can be expressed as a sum of a unique
subset of n-variable elementary symmetric functions. The simplified ANF of f is the
(n + 1)-bit value vector v( f ) = (v0, . . . , vn) satisfying

f (®x) = v0Σ
n
0 (®x) ⊕ v1Σ

n
1 (®x) ⊕ v2Σ

n
2 (®x) ⊕ · · · ⊕ vnΣ

n
n(®x). (6)
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The vectors v( f ) and w( f ), defining the coefficients used in the decomposition of
a symmetric Boolean function f , respectively as a sum of counting functions and as
a sum of elementary symmetric functions, satisfy a linear relation:

wk =

k⊕
i=0

(
k
i

)
vi (mod 2), (7)

where
(k
i

)
is the binomial coefficient k choose i.

The elementary symmetric function of degree k can be expressed as a product of
elementary symmetric functions as follows [15]:

Σ
n
k = Σ

n
2i0 ∧ Σn2i1 ∧ · · · ∧ Σn2i j

, (8)

where (i0, . . . , ij) is the binary representation of k.

2.3. Multiplicative Complexity

With respect to multiplicative complexity (MC), the basis (AND,XOR,NOT) is equivalent
to (AND, XOR, 1), since evaluating a NOT gate is equivalent to computing an XOR with
the constant 1. MC is also the number of nonlinear gates needed to implement the
function even when the set of all fan-in 2 and fan-in 1 gates are available, since any
nonlinear gate can be implemented using one AND gate and other auxiliary linear gates.

Let C∧( f ) denote the MC of the function f . The degree bound [16] states that the
MC of functions having algebraic degree d is at least d − 1. A bound is denoted tight
when it is simultaneously a lower bound and an upper bound.

Let MCmax(S) denote the maximum MC across all the functions in a set S. Sets
of interest include Bn and Sn. Table 1 shows upper bounds for the MC of Boolean
functions on n variables, for n between 2 and 16. For n up to 6, the bounds are tight and
were obtained from prior studies that characterized the MC of Boolean functions [13,
14]. For n larger than 6, the known bounds are likely much looser. This significantly im-
pacts the bounds that we can obtain in this work. The upper bound for n = 7 is derived
from the relation MCmax(Bn) ≤ 1+2·MCmax(Bn−1), obtained from the decomposition

f (x1, . . . , xn) = xn ∧ f ′(x1, . . . , xn−1) ⊕ f ′′(x1, . . . , xn−1). (9)

For n ≥ 8, Table 1 uses the MC upper bound expressed in (10), as can be obtained
from prior work [10,14] (see Remark 1):

MCmax(Bn) ≤ (2 + b) · 2(n−b)/2 − (n + 4 + b)/2, (10)

where b = mod2(n) is the integer 0 or 1 corresponding to the parity of n.

Remark 1. The upper bound obtained in ref. [10, Theorem 6] for the MC of functions in
Bn resulted from a recursion that should stop at an optimal depth; a close examination
reveals that for odd n the optimal depth is d = (n−1)/2 instead of d = (n+1)/2 (used
therein); the former improves the upper bound by 1, as already reflected in (10).
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Table 1: Upper bounds on the MC of Boolean functions

n 2 3 4 5 6 7 8 9∗ 10 11∗ 12 13∗ 14 15∗ 16

MC ≤ 1 2 3 4 6 13 26 41 57 88 120 183 247 374 502

∗ The upper bounds for n ∈ {9, 11, 13, 15} use the improvement described in Remark 1.

3. Hamming weight method

This section describes the Hamming weight method to implement symmetric Boolean
functions. Since the output of a symmetric Boolean function f ∈ Sn depends only
on hw(®x), the method first computes the vectorial Boolean function HBR that outputs
the binary representation of the weight of the input; then it applies a final function g

to calculate f . In essence, the output f (®x) = g(HBR(®x)) is obtained as a composition
g ◦ H of two functions.

3.1. Phase I — Computing the Hamming Weight

The function HBR maps the input vector (x1, . . . , xn) to the output vector (ys−1, . . . , y0)
of length s =

⌈
log2(n + 1)

⌉
, satisfying the integer sum

x1 + · · · + xn = 2s−1ys−1 + · · · + 2y1 + y0. (11)

Komamiya [17] showed that the ith least-significant bit of the binary representation
of the Hamming weight evaluates to the elementary symmetric function Σn2i−1 . Hence,

(ys−1, ys−2, . . . , y0) = (Σn2s−1,Σ
n
2s−2, . . . ,Σ

n
20 ). (12)

The main building blocks to construct circuits for HBR include half adders and full
adders. Each adder computes the binary representation (a pair of bits, denoted carry
and sum) of the integer sum of the (respectively two or three) input bits, as follows:

– A half adder (HA) adds two binary inputs, x1 and x2, and generates a carry bit
and a sum bit, satisfying x1 + x2 = 2 · carry + sum, as in

HA(x1, x2) = (carry, sum) = (x1 ∧ x2, x1 ⊕ x2). (13)

– A full adder (FA) adds three binary inputs, x1, x2 and x3, and generates a carry
bit and a sum bit, satisfying x1 + x2 + x3 = 2 · carry + sum, as in

FA(x1, x2, x3) = (carry, sum) = (ma j(x1, x2, x3), x1 ⊕ x2 ⊕ x3), (14)

where the majority function ma j outputs 1 if at least two of its input bits are equal
to 1 and outputs 0 otherwise. C∧(ma j) = 1, and it can be implemented as

ma j(x1, x2, x3) = ((x1 ⊕ x2) ∧ (x1 ⊕ x3)) ⊕ x1. (15)
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FA FA FA FA HA

FA FA

HA

x3x2 x5x4 x7x6 x9x8 x10

y0

y1

y2

x1

y3

Figure 1: An example Hamming weight circuit for n = 10

Muller and Preparata [5] showed that, for any given n, it is possible to compute
the binary representation of the Hamming weight of n variables by using exactly
n −

⌈
log2(n + 1)

⌉
FAs and

⌈
log2(n + 1)

⌉
− hw(n) (i.e., the number of 0’s in the binary

representation of n) HAs. Figure 1 provides an example circuit for n = 10, using 6
FAs and 2 HAs. Boyar and Peralta [15] provided a proof that such number is in fact
optimal in terms of MC.

3.2. Phase II — Computing g

Once the binary representation ®y = HBR(®x) of the weight of the input ®x is computed,
the computation of a symmetric Boolean function f still requires the computation of
a function g satisfying g(®y) = f (®x) for any ®x ∈ {0,1}n.

In the method of Boyar et al. [8], the function f is first expressed as a sum of
elementary symmetric functions Σni , and then each elementary symmetric function is
written as a product (see (8)) of the output bits of HBR: Σn2s−1,Σ

n
2s−2, . . . ,Σ

n
20 .

The function g is then defined constructively, by replacing the latter by the corre-
sponding input variables of g.

Example 1. Let f = Σ10
9 ⊕ Σ10

7 ⊕ Σ10
3 . The binary representation of the Hamming

weight calculated with HBR outputs Σ10
1 , Σ10

2 , Σ10
4 and Σ10

8 . The function f can then
be written as:

f = Σ10
9 ⊕ Σ10

7 ⊕ Σ10
3

= Σ10
8 ∧ Σ10

1 ⊕ Σ10
4 ∧ Σ10

2 ∧ Σ10
1 ⊕ Σ10

2 ∧ Σ10
1 . (16)

Letting yi = Σ
10
2i , for i = 0, . . . ,3, it follows from (12) that

g(y0, y1, y2, y3) =g(Σ10
1 ,Σ

10
2 ,Σ

10
4 ,Σ

10
8 )

=y0 ∧ y1 ⊕ y0 ∧ y1 ∧ y2 ⊕ y0 ∧ y3. (17)
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3.3. Upper Bounds on the MC of symmetric functions using the HW method

The number of AND gates used in a composition of two circuits is equal to the sum of
AND gates in those two circuits. Furthermore, the MC of the second part can be upper
bounded by MCmax(B |H |), where |H | is the number of output bits of the first part H.
This yields the following upper bound for the MC of symmetric Boolean functions:

( f = g ◦ H) =⇒ C∧( f ) ≤ C∧(H) +MCmax(B |H |). (18)

The above expression can be refined for the case of the Hamming weight method.
There, the MC of H = HBR is exactly n − hw(n) [10] and the output length is exactly⌈
log2(n + 1)

⌉
. Thus, an upper bound for the MC of any n-variable symmetric function

f can be expressed as

C∧( f ) ≤ MCmax(Sn) ≤ n − hw(n) +MCmax(Bdlog2(n+1)e ). (19)

Plugging (10) into (19) yields an upper bound for MCmax(Sn) that is upper bounded
by a function linear in n. The exact expression is somewhat complicated; a simpler
upper bound [10, Corollary 9] is

MCmax(Sn) ≤ n + 3
√

n. (20)

It is not known whether or not MCmax(Sn) is n + Θ(
√

n). It is conceivable that
MCmax(Sn) is n + Θ(polylog(n)).

4. New methods using fewer AND gates

The Hamming weight method does not always lead to MC-optimal circuits [10].
In this section we show novel computation paths, which enable improved circuit
constructions in terms of the number of AND gates, often achieving MC optimality
still within the paradigm f = g ◦ H. In summary, the optimizations are categorized,
based on the modifications to the HW method, in three types:

1. Arity-based HW-encodings. Use alternative weight encodings H that depend
only on the number n of variables of f , but which can have MC smaller than
C∧(HBR) and lead to symmetries in the truth-table entries of the corresponding
g. These alternatives allow a tradeoff between the MC and the output length of H
and possibly the MC of g.

2. Degree-based HW-encoding. Use alternative weight encodings H, depending
on the degree of f , that can eliminate unnecessary sub-computations of HBR that
would only be useful for other symmetric functions of higher degree.

3. Free truth-table entries. Depending on H, choose a g with minimal MC among
a set of alternatives that can evaluate the target f .

Besides the above, some concrete MC bounds devised in this paper also take
advantage of the computational ability to find the MC of functions with fewer than
7 variables [14]. For 7 and 8 variables it is also feasible to confirm whether or not a
function has MC less than or equal to 5.
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4.1. Arity-based HW-encodings

The first phase of the Hamming weight method computes HBR, outputting the binary
representation of the Hamming weight of some n-variable input. This representa-
tion, containing s =

⌈
log2(n + 1)

⌉
bits, is optimally concise and requires exactly

C∧(HBR) = n− hw(n) AND gates. However, for some arities n there are alternative HW
encodings that achieve optimal conciseness (s output bits) at the cost of fewer AND
gates. Using any such encoding necessarily leads to a better upper-bound for the MC
of f , if estimated based on (18). In that case, the MC for H is improved, whereas the
estimated upper bound for the MC of g remains the same (since it depends only on s).

More generally, improvements can often be obtained from reasonably concise
encodings, with t output bits (with s ≤ t), even if not of minimal length s. If t is small
enough, then this can sometimes be leveraged to construct a circuit for f using fewer
AND gates than a circuit based on HBR. This can happen when the difference (e.g., 1 or
2) in number of AND gates due to the difference t − s in output length is small enough
(e.g., 1 or 2, if t− s = 1 and t is 5 or 6, respectively) to compensate for a larger number
of what would otherwise be unneeded or non-optimal AND gates used by HBR. This
section considers this avenue of improvements.

4.1.1. Intuition

In the Hamming weight method, the first phase (computing HBR) reduces the number
of variables while retaining full information about the Hamming weight. At each
step of the process of going from n to s variables, each initial, intermediate or final
variable assigns a weight 2i to its bit. Thus, each such variable represents either a 0 or
a positive integer 2i to contribute to the overall Hamming weight. It is useful to look
at full adders (FA) and half adders (HA) in this perspective:

– an FA consumes three symmetric variables of weight 2i and outputs two variables,
one of weight 2i+1 and another of weight 2i;

– an HA consumes two symmetric variables of weight 2i and also outputs two
variables, one of weight 2i+1 and another of weight 2i .

The input for H is an (inefficient) encoding that uses n variables (the original
input), each of weight 1. The encoding process then consists of progressing over a
sequence of states, each of which is itself an encoding. Each state is characterized
by the tally of variables corresponding to each weight. Each step — a state transition
— is induced by the application of an FA or an HA. An HA transition, associated
with some weight 2i , retains the overall number of variables: one extra variable with
weight 2i+1 and one fewer with weight 2i . The corresponding FA transition reduces
by one the overall number of variables: one extra variable with weight 2i+1 and two
fewer with weight 2i . The reduction in number of variables can be concisely expressed
in “dot notation”, as exemplified in Figure 2 for n = 10 and for two different HW
encodings: HBR is the encoding used in the HW method; HFA is one using only full
adders (further discussed in Section 4.1.2).

Dot notation. The dot notation is a simple and short-hand notation useful for reflect-
ing on the result of an encoding. Each variable is represented by a dot, and each
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521
1 1 1 1 2 1 1 5 1 10

(d) Reduction via HBR

41
1 2 2 4 2 10
(h) Reduction via HFA

Figure 2: “Dots” of variable reduction states for n = 10 variables

column of dots represents all variables with the same weight. The weight associated
with each column doubles between each adjacent column, from right to left. For each
state, the rightmost column corresponds to weight 20 = 1. In the initial state there are
n variables encoding weight 1 (i.e., each variable encodes the actual input bit value).
Thus, in the initial state there is a single column, and it has n dots. The ith column
to the left, when it exists, corresponds to weight 2i . Each application of an HA or an
FA in a column removes 1 or 2 dots, respectively, in that column, and in both cases it
adds one dot to the adjacent column to the left. Figure 2 shows, for the case of n = 10
input variables, several intermediate states for two different encodings (HBR and HFA).
Figure 2(d) shows the HBR reduction, where progressively each column is reduced
to a single dot. Figure 2(h) shows a reduction (dubbed HFA) which only uses FAs,
therefore not proceeding in a column when there are fewer than 3 dots. The number
of AND gates used between states is shown over the arrows.

Calculating the dot configuration. The final dot configuration upon applying HBR
is simply a row of s dots, where s =

⌈
log2(n + 1)

⌉
.

For the HFA encoding the dot configuration is slightly more complex. The resulting
number of columns is

⌊
log2(n + 1)

⌋
, which means it can either be s or s−1. If there are

fewer columns, then at least one column will have two dots, since the overall number t
of dots cannot be smaller than s. From each column with c dots, the reduction of that
column produces exactly b(c − 1)/2c dots in the adjacent column, and leaves exactly
2−mod2(c) dots (one or two) in the original column. Since one variable is reduced for
each FA, the final number of dots is equal to n−#FA(n). Applying this transformation
iteratively, and summing the dots in all the columns, yields the total number of dots
(i.e., variables) when applying FA:

t = hw(n + 1) − 1 +
⌊
log2(n + 1)

⌋
. (21)

4.1.2. HW encodings using only full adders

The first alternative encoding we propose uses only full adders and is denoted by
HFA. It reduces one variable for each used AND gate, and it uses as many as possible
while preserving the information of the Hamming weight. When no more full-adder
operations are possible in these conditions, the output is given as input to phase 2 for
a corresponding function g, denoted gFA.
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Interestingly, HFA often leads to encodings as concise as HBR. Particularly, this
happens exactly to all values of the form n = 2i + 2j − 1. Of these, the cases with
i , j require fewer AND gates than required by HBR.

Even when HFA outputs a number t of variables slightly larger than the number
s output by HBR, the approach may still enable better upper-bounds. The underlying
intuition is that each AND gate in HFA reduces the number of variables by one, whereas
HBR uses half adders, which do not reduce the number of variables. If the number t
of variables output by HFA is small enough, e.g., up to 5 or 6, then the generic upper
bound MCmax(Bt ) (in Table 1) may be good enough to compensate the differential
t − s. (Section 5 will further consider an optimized computation of gFA.)

Comparing HBR vs. HFA. Table 2 compares, for all arities up to n = 22, the results
of applying HW encodings HFA vs. HBR. The table compares side-by-side the MC,
output length and “dots” of the two HW encodings, as well as the generic upper
bounds for the MCmax of the corresponding g and Sn (obtained by applying (18)).
There are five cases to analyze:

– n = 2i − 1. For n ∈ {1,3,7,15}, the final dots form a single row, i.e., there are no
columns with two dots, meaning HFA outputs the same as HBR.

– s = t and n , 2i − 1. For n ∈ {2,4,5,8,9,11,16,17,19}, the output length t of
HFA is optimal (= s) but the final dots do not form a single row. This means that
HFA avoided some inefficient operations that HBR would have performed. This
allows a better upper-bound for MCmax(Sn).

– s < t ≤ 5. For n ∈ {6,10,12,13}, the encoding HFA does not reduce the number
of variables to the minimum, but the generic upper bound for the MCmax of g is
still t − 1, therefore still leading to MCmax(Sn) = n − 1.

– t = 6. For n ∈ {14,18,20,21}, HFA outputs an encoding with length t = 6, for
which the generic upper bound for MCmax(Bt ) is also t, therefore leading to an up-
per bound for MCmax(Sn) that is equal to n. In each of these cases, the techniques
to be further presented in this work will still allow us to reduce the bound to the
degree bound n − 1.

– t = 7. For n = 22, the MCmax(Sn) upper bound obtained with HFA is, for the first
time, worst than the one obtained with HBR. This happens because the increase
by 9 AND gates, between MCmax(Bt=7) and MCmax(Bs=5), in the second phase is
larger than the decrease by 4 AND gates, between the MC 19 of HBR and the MC
15 of HFA, in the first phase.

Remark 2. The results mentioned in Table 2 concern the MCmax(Sn) upper bound
obtained using (18), where an upper bound for MCmax(Sn) is estimated generically
(Table 1). These results highlight immediate benefits from applying the HFA encoding.
However, better upper-bounds will be obtained in Section 5 when complementing the
technique with a more refined computation of the MCmax (and/or better upper-bound)
for the set of needed functions g.
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Table 2: Comparison of HBR and HFA encodings and results

n

Phase 1: H (HW encoding) Phase 2: g f = g ◦ H

MC Output
length |H | Dots Upper bound on

MCmax(B |H |)
Upper bound on

MCmax(Sn)
BR FA BR FA BR FA BR FA BR FA

1 0 0 1 1 . . 0 0 0 0
2 1 0 2 2 .. : 1 1 2 1
3 1 1 2 2 .. .. 1 1 2 2
4 3 1 3 3 ... .: 2 2 5 3
5 3 2 3 3 ... :. 2 2 5 4
6 4 2 3 4 ... :: 2 3 6 5
7 4 4 3 3 ... ... 2 2 6 6
8 7 4 4 4 .... ..: 3 3 10 7
9 7 5 4 4 .... .:. 3 3 10 8
10 8 5 4 5 .... .:: 3 4 11 9
11 8 7 4 4 .... :.. 3 3 11 10
12 10 7 4 5 .... :.: 3 4 13 11
13 10 8 4 5 .... ::. 3 4 13 12
14 11 8 4 6 .... ::: 3 6 14 14∗

15 11 11 4 4 .... .... 3 3 14 14
16 15 11 5 5 ..... ...: 4 4 19 15
17 15 12 5 5 ..... ..:. 4 4 19 16
18 16 12 5 6 ..... ..:: 4 6 20 18∗

19 16 14 5 5 ..... .:.. 4 4 20 18
20 18 14 5 6 ..... .:.: 4 6 22 20∗

21 18 15 5 6 ..... .::. 4 6 22 21∗

22 19 15 5 7 ..... .::: 4 13 23 28∗

∗ A better upper-bound is found for these values in Section 5.

4.1.3. HW encodings using one or a few half adders

As mentioned for the cases n ∈ {14,18,20,21,22} in Table 2, using an encoding H
(e.g., HFA) with an output length t ≥ 6 does not yield, for Sn, a MCmax upper bound
equal to the degree bound (n − 1). This happens because starting at t = 6 the generic
upper bound for MCmax(Bt ) is larger than t − 1. For t = 6 the difference between
MCmax(Bt ) and MCmax(Bt−1) is only 1, but as t increases the difference increases
exponentially. For example, for t = 7 that difference is already 7, since the corre-
sponding MCmax bound is 13 (see Table 1). In such cases, a better upper-bound for
MCmax(Sn), still based on (18), may be obtained by using yet a different encoding,
differing from HFA by using one or a few extra HAs that enable subsequent use of
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more FAs and therefore a corresponding further reduction in the number of variables.
The tradeoff to consider is the cost of applying HAs vs. the benefit of reducing the
number of variables t to enable a better upper bound for MCmax(Bt ).

For example, if the use of one HA enables a subsequent use of one extra FA, then
at the cost of two AND gates the number of variables is, compared with HFA, further
reduced by 1. This is certainly better than incurring an upper bound increase of 7,
by relying on MCmax(B7) = 13 instead of MCmax(B6) = 6. More generally, if j HAs
enable the overall use of i FAs, then this enables reducing i variables at the cost of
k = i + j AND gates. This begs the question: for each limit j on the number of HAs,
what is the maximum number i of FAs that can be used in a way to reduce the number
of variables from n to n − i?

Notation. The generalized encoding using j HAs is denoted by Hj ; the number of
output variables is denoted by tj ; the number of used AND gates is denoted by k j (and
is equal to n − tj + j). The symbol HHA is used to generically denote an encoding Hj

for some implicit j.

The previously explored encoding HFA is the case with j = 0, i.e., HFA = H0 and
t0 = t. It is worth exploring the cases where j is also allowed to be a small positive
integer, e.g., 1, 2 and 3. With respect to the MCmax(Sn) upper bound estimated using
(18) (see Remark 2), using Hj with some j ≥ 1 is only worth over HFA if t0 ≥ 7
and simultaneously k j − k0 < MCmax(Btj) −MCmax(Bt0). For example, if t0 ≤ 6, the
cost of two ANDs to reduce one variable will never over-compensate the difference in
MCmax(Bt ). More concretely, using j ≥ 1 is counterproductive if t0 ≤ 5; j ≥ 2 is also
counterproductive if t0 = 6.

Comparing HBR vs. HHA (H0, H1, H2). Table 3 shows the results upon application
of up to a few half-adders, for n ∈ {22, ...,36}. The table is similar to Table 2, except
for replacing HFA by Hj and for adding a new column for the parameter j (defining
the number of HAs used in Hj). There are several cases worth analyzing:

– The arity n = 22 is the first for which the new technique is helpful. Using one HA
directly enables for MCmax(Sn) an upper bound equal to 22, whereas HBR and
HFA would respectively lead to upper bounds 23 and 28.

– The arity n = 36 is the first for which it is useful to use two HAs. In fact, using
HFA = H0 or H1 leads to an upper bound of 42, which would be worse than the
upper bound 40 possible with HBR.

– The arity n = 28 is the first where the choice of the position of the first HA
application (not detailed in the table) does not happen at the first opportunity to
apply it. Doing HFA would lead to t0 = 7 dots with configuration “::.:”; then,
when deciding to use one HA, instead of starting at the least-significant column
(the rightmost one) with two dots, the HA starts at the second such column. The
rationale for this is explained further below.

– For n ∈ {29,30,31} the encoding Hj collapses to HBR, respectively using 1, 1 and
0 HAs, leading to a dot configuration composed of a single row of dots.

– For n ∈ {23,31} the resulting upper bounds on MCmax(Sn) are equal to the re-
spective degree lower-bound (= n − 1), which means they are tight. It is open for
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Table 3: Comparison of HBR and HHA encodings and results

n j

Phase 1: H (HW encoding) Phase 2: g f = g ◦ H

MC Output
length |H | Dots Upper bound

on MCmax(B |H |)
Upper bound
on MCmax(Sn)

BR HA BR HA BR HA BR HA BR HA
22 1 19 18 5 5 ..... :... 4 4 23 22
23 0 19 18 5 5 ..... :... 4 4 23 22
24 0 22 18 5 6 ..... :..: 4 6 26 24
25 0 22 19 5 6 ..... :.:. 4 6 26 25
26 1 23 21 5 6 ..... ::.. 4 6 27 27
27 0 23 21 5 6 ..... ::.. 4 6 27 27
28 1 25 23 5 6 ..... ....: 4 6 29 29
29 1 25 25 5 5 ..... ..... 4 4 29 29
30 1 26 26 5 5 ..... ..... 4 4 30 30
31 0 26 26 5 5 ..... ..... 4 4 30 30
32 0 31 26 6 6 ...... ....: 6 6 37 32
33 0 31 27 6 6 ...... ...:. 6 6 37 33
34 1 32 29 6 6 ...... ..:.. 6 6 38 35
35 0 32 29 6 6 ...... ..:.. 6 6 38 35
36 2 34 32 6 6 ...... .:... 6 6 40 38

which other values n ≥ 22 a computation for finding the actual MCmax of the set
of needed functions gj may enable a better bound.

Where to apply HA. As illustrated with the case n = 28, there may exist several
alternatives for where to apply an HA, and not all are optimal. Indeed, n = 28 is the
first arity for which this problem arises. For this n, applying HFA would induce a dot
configuration “::.:”. Since the rightmost column does not have any other adjacent
column with two dots, the use of a single HA therein would not immediately allow
using another FA. However, this is possible when applying a single HA in the least
significant column of a set of adjacent columns where all contain two dots. Particularly,
both the two leftmost columns have two dots and are adjacent. Thus, the use of one
HA in the least significant of these two allows a subsequent use of one FA, leading to
a reduction to t1 = 6 dots (with configuration “....:”).

The larger the number of adjacent columns with two dots each, the better is the
result when applying a single HA to the least significant column of the set. However,
when more than one HA can be applied, the optimal choice becomes more complex.
This observation highlights that the use of HAs must be judicious not only about the
allowed number of HAs but also about the variable weights to which they are applied.
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4.2. Degree-based HW-encodings

At any stage in the process of Hamming weight computation, the generated intermedi-
ate variables are functions of input variables. The degrees of these variables are related
to the columns in which they appear in the dot notation, which in turn depend on the
preceding processing through FAs and HAs. Specifically, the intermediate variables
in the ith rightmost column of the dot notation have degree 2i−1. It is reasonable to
avoid the generation of intermediate variables whose degree exceeds the degree of the
symmetric function one wants to implement. This imposes the condition that FAs will
only be applied up to the column corresponding to degrees that are less than or equal
to deg( f ). The technique leads to circuits with fewer AND gates because it eliminates
unnecessary multiplications. However, the function g might have a larger number of
variables compared to the number of variables remaining in the HFA encoding, which
may affect the feasibility of computing an MC-optimal circuit.

Bounded degree case. Let 1 < 2s−1 ≤ n < 2s and let f be a symmetric Boolean
function on n inputs. Then f can be calculated from the values of Σn20, . . . ,Σ

n
2s−1 .

Calculating the s elementary symmetric functions above requires n−hw(n) AND gates.
This yields the following bound:

C∧( f ) ≤ n − hw(n) +MCmax(Bs). (22)

For example, if n = 63 then 25 ≤ n < 26 and therefore C∧( f ) ≤ 63 since hw(63) = 6
and MCmax(B6) = 6.

When the degree of the function is less than n/2, we can get a new bound on the
multiplicative complexity. If f is an n-variable symmetric Boolean function of degree
k, and 1 < 2r−1 ≤ k < 2r then the upper bound is

C∧( f ) ≤ C∧(Σn20, . . . ,Σ
n
2r−1 ) +MCmax(Br ). (23)

Let γ = n mod 2r . Then, by Lemma 11 of ref. [15],

C∧(Σn20, . . . ,Σ
n
2r−1 ) ≤

(
2r−1 − 1

2r−1

)
(n − γ) + γ − hw(γ). (24)

For example, let f be a symmetric function of 100 variables with degree k = 31.
Then 24 ≤ k < 25, which yields r = 5 and γ = 100 mod 32 = 4. Since MCmax(B5) =
4, we get the bound C∧( f ) ≤

(
15
16

)
(100 − 4) + 4 − 1 + 4 = 97.

4.3. Free entries in the truth table of g

After phase 1 encodes the weight, phase 2 finalizes with the computation of g, which
combines the bits of the weight. As described in Section 3.2 (e.g., see Example 1),
Peralta and Boyar express f as a sum (6) of elementary symmetric functions, and in
turn express each term of the sum as a product (8) of elementary symmetric functions
of degree equal to a power of two (Σn2s−1, . . . ,Σ

n
21,Σ

n
20 ). That method provides a unique

expression for g, based on f and HBR.
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We observe that when n is not of the form 2i − 1, then for any f ∈ Sn there
are several possibilities for g after applying H = HBR. This becomes evident when
representing the target symmetric function f as a sum of counting functions (see (4)).

The simplified value vector (w0, . . . ,wn) determines the first (n + 1) terms of
the truth table of g, as in (w0,w1, . . . ,wn,∗, . . . ,∗). The free entries, denoted as ∗,
correspond to output values of g that do not matter, since they correspond to weights
that never appear as input to g (after the Hamming weight encoding HBR).

The number of free entries in the truth table is equal to l = 2s − n − 1, where s
is the number of bits in the binary representation of n. When n is of the form 2s − 1,
the truth table for g does not have any free entries, i.e., l = 0. For all other values n
there are free entries that allow choosing from among several possible functions g,
possibly allowing to choose one with the smallest multiplicative complexity.

Example 2. Let f = Σ10
9 ⊕ Σ10

7 ⊕ Σ10
3 , which is equal to f = E10

3 ⊕ E10
9 in terms of

counting functions. When applying the basic Hamming weight method, where f =
g◦HBR, the truth table of any corresponding 4-variable function g must be of the form

(0,0,0,1,0,0,0,0,0,1,0,∗,∗,∗,∗,∗). (25)

This contains 5 free entries, which means there are 25 possible choices for g. In fact,
for any 10-variable symmetric Boolean function f , after applying the HBR encoding
the missing function g can be any 4-variable function selected from within a set of
25 functions. While there exist 4-variable functions with MC 3, we know that for any
such f there is a corresponding g with MC 2.

The example 2 can be extended even for the case of a single free entry. It is known
that 4-variable Boolean functions can be implemented using at most 3 AND gates, and,
among those, the functions with MC 3 have degree 4. By choosing the last truth-table
entry such that the parity of the truth table is even guarantees that the degree of the
function is at most 3, and such functions can be implemented using at most 2 AND gates.

The concatenation method. When the number l of free entries is large, checking
the multiplicative complexity of all possible functions may be infeasible. In those
cases, the truth table of an m-variable function g ∈ Bm can be interpreted as the
concatenation of the truth tables of two functions g1 and g2, each having m − 1
variables. This representation corresponds to a decomposition as follows:

g(z1, . . . , zm) = g1(z1, . . . , zm−1) ⊕ (zm ∧ (g1(z1, . . . , zm−1) ⊕ g2(z1, . . . , zm−1))). (26)

Based on this decomposition, we can get an upper bound for the MC of g:

C∧(g) ≤ C∧(g1) + C∧(g2) + 1 (27)

In this decomposition, function g1 has no free entries, but the last l bits of the
truth table of g2 can be selected freely. As a shorthand notation, we use Gi to denote
a decomposition where i = dlog2(2m−1 − l)e is the minimum number of variables for
which there is a i-variable function g2 satisfying the defined entries. For large enough
l, we can have i smaller than m − 1.

An exceptional case (G0). When the number of free entries is equal to 2m−1 − 1
there is a single defined entry g2(0, . . . ,0) = g(0, . . . ,0,1) ≡ b. In this case, instead of
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defining g2 as a constant function, it is advantageous to define g2 = g1 ⊕ b. Then, the
component g1(z1, . . . , zm−1) ⊕ g2(z1, . . . , zm−1) in (26) becomes a constant, allowing
the removal of the “+1” term in (27), meaning the use of G0 enables C∧(g) ≤ C∧(g1).

5. Results

5.1. Symmetric functions with up to 25 variables

In order to compute the circuit of a given symmetric function f ∈ Sn, the algorithm
first computes the degree of f and determines the encoding based on the degree and
the arity of f , as described in Sections 4.1 and 4.2, determining up to which point to
use full adders. In the second phase, the algorithm constructs a circuit for a function
g, satisfying f = g ◦ H. When only full adders have been applied in the first phase,
there is a single possible function g to implement. Exceptionally for n = 22, we had
to use half adders, since the number of variables after applying the full adders (see
Section 4.2) was otherwise too high to enable the computation of the MC of g. The
MC of g was computed using the techniques from ref. [14].

We have applied the method to all symmetric functions with up to n = 25 variables.
The source code used to generate these results is publicly available online [18]. In
Table 4, each cell in a row n and column B contains the number of functions f ∈ Sn

for which the method provides a circuit with B AND gates. For each such function, B
is thus an upper bound on the MC, but some functions may have a smaller MC.

We make a few observations about the functions accounted in Table 4:

– For each n, there are four functions with MC 0; these are the symmetric linear
functions 0, 1, Σn1 and Σn1 ⊕ 1.

– For each even n, there are twelve functions with MC equal to n/2; these are the
functions Σn2 , Σn3 and Σn3 ⊕Σ

n
2 , and the corresponding functions obtained by adding

any of the four symmetric linear functions.
– For each odd n, there are four functions with MC equal to (n − 1)/2; these are the

functions obtained by adding Σn2 with any of the four symmetric linear functions.
– For each odd n ≥ 9, there are eight functions with MC equal to (n + 1)/2; these

are the functions Σn3 , Σn3 ⊕Σ
n
2 and the corresponding functions obtained by adding

any of the four symmetric linear functions.

Table 4 also shows that, for any n ≤ 21 and for n = 23, all n-variable symmetric
Boolean functions can be implemented with at most n − 1 AND gates. Since n − 1 is
also the degree lower bound for functions of degree n, it follows that n − 1 is also the
exact MCmax(Bn) for n ≤ 21 and n = 23. The arity n = 22 is the first case for which
we cannot yet settle the exact MCmax, i.e., we can present the upper bound 22, but we
are not yet able to decide whether MCmax(S22) is 22 or 21.

Special classes of symmetric Boolean functions. As a special case, in Appendix A
we show MC upper bounds for all Σn

k
(Table 5) and all En

k
(Table 6), for n ≤ 25.
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Table 4: Number of functions in Sn for each obtained upper bound (B) for MC

n
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Total

1 4 22

2 4 4 23

3 4 4 8 24

4 4 12 16 25

5 4 4 24 32 26

6 4 12 48 64 27

7 4 4 16 104 128 28

8 4 12 16 224 256 29

9 4 4 8 48 448 512 210

10 4 12 0 96 712 1224 211

11 4 4 8 8 168 1856 2048 212

12 4 12 0 16 320 2912 4928 213

13 4 4 8 0 48 480 6048 9792 214

14 4 12 0 0 96 480 9240 22 936 215

15 4 4 8 0 8 120 1136 31 488 32 768 216

16 4 12 0 0 16 256 1344 41 440 88 000 217

17 4 4 8 0 0 48 256 2944 82 880 176 000 218

18 4 12 0 0 0 96 224 2880 91 904 429 168 219

19 4 4 8 0 0 8 104 320 9280 337 920 700 928 220

20 4 12 0 0 0 16 224 256 8608 280 496 1 807 536 221

21 4 4 8 0 0 0 48 192 576 14 960 717 456 3 461 056 222

22 4 12 0 0 0 0 4 52 80 1188 57 068 4 039 600 4 290 600 223

23 4 4 8 0 0 0 8 104 144 1264 72 704 5 411 328 11 291 648 224

24 4 12 0 0 0 0 16 224 32 1664 67 552 3 277 056 30 207 680 192 225

25 4 4 8 0 0 0 0 48 192 64 3584 100 480 6 886 976 60 116 992 512 226
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t0 = (x6 ⊕ x7) ∧ (x6 ⊕ x8)
t1 = (x4 ⊕ x5) ∧ (x4 ⊕ x6 ⊕ x7 ⊕ x8)
t2 = (x2 ⊕ x3) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8)
t3 = (t0 ⊕ t1 ⊕ t2 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6) ∧ (x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8)
t4 = (t0 ⊕ t1 ⊕ x1 ⊕ x4 ⊕ x6) ∧ (t3 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8)
t5 = (t0 ⊕ t1 ⊕ x4 ⊕ x6) ∧ (t0 ⊕ t2 ⊕ t3 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8)
Σ8

4 = t0 ⊕ t4 ⊕ t5 ⊕ x6

Figure 3: Implementation of the elementary symmetric function Σ8
4

t0 = (x6 ⊕ x7) ∧ (x6 ⊕ x8)
t1 = (x4 ⊕ x5) ∧ (x4 ⊕ x6 ⊕ x7 ⊕ x8)
t2 = (x2 ⊕ x3) ∧ (x2 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8)
t3 = (t1 ⊕ t2 ⊕ x2 ⊕ x4) ∧ (t0 ⊕ 1 ⊕ x1 ⊕ x6)
t4 = (t0 ⊕ t1 ⊕ x4 ⊕ x6) ∧ (t0 ⊕ t3 ⊕ 1 ⊕ x1 ⊕ x6)
E8

4 = (1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8) ∧ (t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ x2 ⊕ x4)

Figure 4: Implementation of the counting function E8
4

In 2008, Boyar and Peralta posed two concrete problems related to the MC of
symmetric Boolean functions [15]: is the C∧(Σ8

4) equal to 5 or 6?; is the C∧(E8
4 )

equal to 6 or 7? The methods described in this paper provide the implementations
for Σ8

4 and E8
4 (see Fig. 3 and Fig. 4) with 6 ANDs, which solves the case for E8

4 . The
optimality of the circuit for Σ8

4 is verified using the methods from ref. [14], by ruling
out the possibility of implementing the function with 5 AND gates.

The results also answer another question from ref. [15] — C∧(Σn
k
) is not monotonic

in k. More concretely, in Table 5 we observe that for each n > 7 the computed upper
bound is not monotonic in k, but for each k the upper bound is non-decreasing in n.

5.2. Maximum MC for up to large arities

The following proposition expresses a useful observation — the MCmax is non-
decreasing as the number of variables increases. This allows framing the MCmax
for any arity n in between the MCmax of the preceding and succeeding arities.

Proposition 1 (Non-decreasing MCmax). Let MCmax(Sn) denote the maximum MC
of symmetric Boolean functions with n variables. Then, MCmax(Sn+1) ≥ MCmax(Sn).

Proof. Consider any function f ∈ Sn. Let v( f ) = (v0, ..., vn) be the simplified
ANF of f , such that vi is 1 if and only if the elementary symmetric function Σni
appears in the elementary additive decomposition of f . Let f ′ be another symmetric
function defined as the result of replacing each Σni (x1, ..., xn), in the simplified ANF
of f , by Σn+1

i (x1, ..., xn+1), which contains xn+1 as a new variable. When in the latter
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√
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⌋
) from ref. [10]

MC UB based on (19) (from ref. [15]) but
improved with the results in Table 1

Our new upper bound upon improving H and g

Degree lower bound

Figure 5: Comparison of MC bounds for n-variable symmetric functions

we replace xn+1 by 0, we eliminate all terms containing xn+1, leaving exactly all
the terms of degree i that do not contain xn+1. Thus, it follows that Σni (x1, ..., xn) =
Σn+1
i (x1, ..., xn,0). Consequently, f ′(x1, ..., xn,0) = f (x1, ..., xn). Let C ′ be an MC-

optimal circuit for f ′. Starting from C ′, for any wire carrying input xn+1 replace
it by a constant 0, thereby getting a new circuit C. Circuit C computes f with the
same number of AND gates as in C ′. Therefore, MCmax(Sn) ≤ MCmax(Sn+1), i.e.,
MCmax(Sn+1) ≥ MCmax(Sn). �

The techniques devised in this paper enable calculation of upper bounds for
MCmax(Sn) for arities n larger than 25. Figure 5 shows, for n up to 132, a graphical
comparison of the degree lower bound, our new upper bounds, and the upper bounds
obtained from equations 19 and 20. Table 7 in Appendix B shows a table with the
corresponding MCmax for n up to 132, and a detailed indication of the used method.

As n increases, more often the full-adder approach (HFA = H0) is not sufficient
to achieve a small enough t (number of variables left for phase 2). As n increases,
more often more HAs may have to be applied (i.e., the larger j has to be) to achieve
a low enough number tj of variables that allow us to obtain a good upper bound for f
based on a possible upper bound for gj . If the exact MCmax of the set G of functions
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needed for phase 2 could always be computed, then a better bound could often be
obtained. However, since with respect to finding the MC of arbitrary functions our
computational resources are currently limited to cases with up to t = 6 variables, we
can often not use the ideal j and respective MCmax.

6. Conclusion and future work

Finding efficient circuits in terms of the number of AND gates for Boolean functions
when n ≥ 7 is a hard problem. In this paper, we have focused on the class of symmetric
functions. The symmetries in these functions enable construction of efficient circuits
with a small number of AND gates. We have provided different weight encodings that
aim to optimize the number of AND gates.

Although symmetric functions constitute a small class within the set of Boolean
functions, the provided bounds also hold for Boolean functions that are affine equiv-
alent to symmetric functions. The techniques presented in this paper can potentially
be applied to larger classes of functions, such as partially symmetric functions and
rotation symmetric functions, which also contain the set of symmetric functions.

A natural further direction is to understand when techniques provide optimal so-
lutions and when they can be improved. It would be interesting to determine what is
the smallest value of n such that MCmax(Sn) is greater than or equal to n.
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A. MC upper-bounds for special classes of symmetric Boolean functions

Tables 5 and 6 show MC upper bounds, respectively for all elementary-symmetric
Boolean functionsΣn

k
and all exactly-counting Boolean functions En

k
, with any number

n of variables up to 25, and with k up to n. We derived the upper bounds using
exhaustive search (see Section 5.1). We then observed some patterns:

– in Table 5, the MC upper bounds computed for Σn
k

fit the formula

(k − 1) +
blog2(k)c∑

j=1

⌊
n − k

2j

⌋
; (28)

– in Table 6, for each k, the upper bound for En
k

can be expressed as n − δ(n, k),
where δ(n, k) is periodic in n, with period divisible by 2r in n, i.e., δ(n, k) =
δ(mod2r (n), k), with r =

⌈
log2(k + 1)

⌉
(the period stems from the corresponding

period of the r least-significant columns of dots upon the HFA encoding).

A rigorous analysis of the exact MCs is deferred to future work.
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Table 5: Upper bounds on the MC of elementary symmetric functions Σn
k

n
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 - - - - - - - - - - - - - - - - - - - - - - - -
2 0 0 1 - - - - - - - - - - - - - - - - - - - - - - -
3 0 0 1 2 - - - - - - - - - - - - - - - - - - - - - -
4 0 0 2 2 3 - - - - - - - - - - - - - - - - - - - - -
5 0 0 2 3 3 4 - - - - - - - - - - - - - - - - - - - -
6 0 0 3 3 4 4 5 - - - - - - - - - - - - - - - - - - -
7 0 0 3 4 4 5 5 6 - - - - - - - - - - - - - - - - - -
8 0 0 4 4 6 5 6 6 7 - - - - - - - - - - - - - - - - -
9 0 0 4 5 6 7 6 7 7 8 - - - - - - - - - - - - - - - -
10 0 0 5 5 7 7 8 7 8 8 9 - - - - - - - - - - - - - - -
11 0 0 5 6 7 8 8 9 8 9 9 10 - - - - - - - - - - - - - -
12 0 0 6 7 9 8 9 9 10 9 10 10 11 - - - - - - - - - - - - -
13 0 0 6 7 9 10 9 10 10 11 10 11 11 12 - - - - - - - - - - - -
14 0 0 7 8 10 10 11 10 11 11 12 11 12 12 13 - - - - - - - - - - -
15 0 0 7 8 10 11 11 12 11 12 12 13 12 13 13 14 - - - - - - - - - -
16 0 0 8 9 12 11 12 12 14 12 13 13 14 13 14 14 15 - - - - - - - - -
17 0 0 8 9 12 13 12 13 14 15 13 14 14 15 14 15 15 16 - - - - - - - -
18 0 0 9 10 13 13 14 13 15 15 16 14 15 15 16 15 16 16 17 - - - - - - -
19 0 0 9 10 13 14 14 15 15 16 16 17 15 16 16 17 16 17 17 18 - - - - - -
20 0 0 10 11 15 14 15 15 17 16 17 17 18 16 17 17 18 17 18 18 19 - - - - -
21 0 0 10 11 15 16 15 16 17 18 17 18 18 19 17 18 18 19 18 19 19 20 - - - -
22 0 0 11 12 16 16 17 16 18 18 19 18 19 19 20 18 19 20 20 19 20 20 21 - - -
23 0 0 11 12 16 17 17 18 18 19 19 20 19 20 20 21 19 20 20 21 20 21 21 22 - -
24 0 0 12 13 18 17 18 18 21 19 20 20 21 20 21 21 22 20 21 21 22 21 22 22 23 -
25 0 0 12 13 18 19 18 19 21 22 20 21 21 22 21 22 22 23 21 22 22 23 22 23 23 24

Table 6: Upper bounds on the MC of (exactly-k) counting functions En
k

n
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 - - - - - - - - - - - - - - - - - - - - - - - -
2 1 0 1 - - - - - - - - - - - - - - - - - - - - - - -
3 2 2 2 2 - - - - - - - - - - - - - - - - - - - - - -
4 3 2 2 2 3 - - - - - - - - - - - - - - - - - - - - -
5 4 4 3 3 4 4 - - - - - - - - - - - - - - - - - - - -
6 5 4 5 3 5 4 5 - - - - - - - - - - - - - - - - - - -
7 6 6 6 6 6 6 6 6 - - - - - - - - - - - - - - - - - -
8 7 6 6 6 6 6 6 6 7 - - - - - - - - - - - - - - - - -
9 8 8 7 7 7 7 7 7 8 8 - - - - - - - - - - - - - - - -
10 9 8 9 7 8 7 8 7 9 8 9 - - - - - - - - - - - - - - -
11 10 10 10 10 9 9 9 9 10 10 10 10 - - - - - - - - - - - - - -
12 11 10 10 10 11 9 9 9 11 10 10 10 11 - - - - - - - - - - - - -
13 12 12 11 11 12 12 10 10 12 12 11 11 12 12 - - - - - - - - - - - -
14 13 12 13 11 13 12 13 10 13 12 13 11 13 12 13 - - - - - - - - - - -
15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - -
16 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 - - - - - - - - -
17 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 - - - - - - - -
18 17 16 17 15 16 15 16 15 16 15 16 15 16 15 16 15 17 16 17 - - - - - - -
19 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 - - - - - -
20 19 18 18 18 19 17 17 17 18 17 17 17 18 17 17 17 19 18 18 18 19 - - - - -
21 20 20 19 19 20 20 18 18 19 19 18 18 19 19 18 18 20 20 19 19 20 20 - - - -
22 21 20 21 19 21 20 21 18 20 19 20 18 20 19 20 18 21 20 21 19 21 20 21 - - -
23 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 - -
24 23 22 22 22 22 22 22 22 23 21 21 21 21 21 21 21 23 22 22 22 22 22 22 22 23 -
25 24 24 23 23 23 23 23 23 24 24 22 22 22 22 22 22 24 24 23 23 23 23 23 23 24 24

B. Description of MCmax upper bounds

Table 7 shows, for each n ≤ 132, the MCmax upper bound we found for the set Sn of
n-variable symmetric Boolean functions. For each n, the table identifies an encoding
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H of the Hamming weight, and a method G for finding an MC upper bound of the
corresponding g. We checked five different practical combinations of H and G:

C1. H = HBR and G = gen, where “gen” uses for g the MC upper bound from Table 1.
This was used for n ∈ {1, 3, 7, 15, 29–31, 48–63, 99–127}.

C2. H = H0 (i.e., using only full adders) and G = exp, where “exp” is an exhaustive
computation “experimentally” determining the MC of each g corresponding to
each f ∈ Sn. This was used for n ∈ {14,18,20,21}.

C3. H = Hj (possibly using some ( j ≥ 0) half adders, but not computing the full HBR)
and G = gen. This was used for n ∈ {2, 4–6, 8–13, 16–17, 19, 22–28, 32–47}.

C4. H = HBR and G = Gi , where Gi applies the concatenation method to function g,
to obtain g2 with only i variables (if i ≥ 1), or to use g2 = g1 + g(0, . . . ,0,1) (if
i = 0). This was used for n ∈ {64–79, 81–95, 128–132}.

C5. H = HBR and G = Gi, j , where Gi, j applies Gi to g and then applies G j to the
corresponding g2. This was used for n ∈ {80, 96–98}.

The best combination varies with n, but sometimes several combinations yield the
same best upper bound. Table 7 shows H and G only for the first best combination in
the order C1 < C2 < C3 < C4 < C5.

Column “H” shows the number of used half adders as a subscript j in Hj . When
said encoding is HBR, an asterisk is added as suffix (H∗

j ). Column “D” shows the differ-
ence to the upper bound that would be obtained with the reference method C1. Column
“UB” shows the upper bound in bold when it is equal to the degree bound (n − 1).

Example 3. The case n = 72 (using combination C4) indicates an encoding H =
H∗

5 = HBR with 5 half adders, and a method G4 for g. The encoding HBR produces
an output of seven variables (z1, . . . , z7), upon which the function g can be written as
g1(z1, . . . , z6) ⊕ z7 ∧(g1(z1, . . . , z6) ⊕ g2(z1, . . . , z4)). Since the MC for HBR(x1, ..., x72)
is 70, the overall upper bound is equal to 79 = 70 + 6 + 1 + 3, where 6 and 3 are the
generic MC upper bounds for g1 and g2 (functions of 6 and 4 variables, respectively),
and the extra 1 is the AND used to multiply z7 with (g1 ⊕ g2).

Example 4. The case n = 80 (using combination C5) indicates the use of H =

H∗
5 = HBR and G5,0. The HBR encoding outputs 7 variables. Then, G5 decomposes

g into g1(z1, . . . , z6) ⊕ y6 ∧ (g1(z1, . . . , z6) ⊕ g2(z1, ..., z5)). Since for n = 80 there are
81 possible weights, the function g2 is a 5-variable function with 17 (= 81 − 64)
defined entries and 15 free entries. For the second decomposition, the number of
defined entries of the second component will be 1(= 17 − 16). Thus, G0 can be
applied (recall the exceptional case described in Section 4.3) to decompose g2 into
g′2(z1, . . . , z4)⊕ (z5∧b), where b is the constant g(0, ...,0,1). Thus, the upper bound for
the MCmax for n = 80 is equal to 88 = 78+6+1+ (3+0), where 78 is the MC of HBR
on 80 variables, and where 6, 3 and 0 are the MC majorants for the 6-variable function
g1, the 4-variable function g′2, and the 1-variable function b ∧ z5, respectively.
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Table 7: Upper bounds (UB) obtained for MCmax(Sn)

n UB D H G

1 0 0 H0
∗

gen

2 1 1 H0
3 2 0 H0

∗

4 3 2

H05 4 1

6 5 1

7 6 0 H0
∗

8 7 3

H0

9 8 2

10 9 2

11 10 1

12 11 2

13 12 1

14 13 1 H0 exp
15 14 0 H0

∗

gen16 15 4
H017 16 3

18 17 3 H0 exp
19 18 2 H0 gen
20 19 1

H0 exp21 20 2

22 22 1 H1

gen

23 22 1

H024 24 2

25 25 1

26 27 0 H1
27 27 0 H0
28 29 0 H1
29 29 0

H1
∗

30 30 0

31 30 0 H0
∗

32 32 5
H033 33 4

n UB D H G

34 35 3 H1

gen

35 35 3 H0
36 38 2 H2
37 38 2

H138 39 2

39 39 2 H0
40 43 1 H3
41 43 1

H242 44 1

43 44 1 H1
44 46 1 H2
45 46 1

H146 47 1

47 47 1 H0
48 52 0 H4

∗

49 52 0
H3

∗
50 53 0

51 53 0 H2
∗

52 55 0 H3
∗

53 55 0
H2

∗
54 56 0

55 56 0 H1
∗

56 59 0 H3
∗

57 59 0
H2

∗
58 60 0

59 60 0 H1
∗

60 62 0 H2
∗

61 62 0
H1

∗
62 63 0

63 63 0 H0
∗

64 69 7 H6
∗ G0

65 70 6 H5
∗ G1

66 71 6 H5
∗ G2

n UB D H G

67 72 5 H4
∗ G2

68 74 5 H5
∗

G3
69 74 5

H4
∗

70 75 5

71 76 4 H3
∗

72 79 4 H5
∗

G4

73 79 4
H4

∗
74 80 4

75 80 4 H3
∗

76 82 4 H4
∗

77 82 4
H3

∗
78 83 4

79 84 3 H2
∗

80 88 3 H5
∗ G5,0

81 89 2
H4

∗

G5

82 90 2

83 90 2 H3
∗

84 92 2 H4
∗

85 92 2
H3

∗
86 93 2

87 93 2 H2
∗

88 96 2 H4
∗

89 96 2
H3

∗
90 97 2

91 97 2 H2
∗

92 99 2 H3
∗

93 99 2
H2

∗
94 100 2

95 100 2 H1
∗

96 105 2 H5
∗ G6,0

97 106 1 H4
∗ G6,1

98 107 1 H4
∗ G6,2

99 108 0 H3
∗ gen

n UB D H G

100 110 0 H4
∗

gen

101 110 0
H3

∗
102 111 0

103 111 0 H2
∗

104 114 0 H4
∗

105 114 0
H3

∗
106 115 0

107 115 0 H2
∗

108 117 0 H3
∗

109 117 0
H2

∗
110 118 0

111 118 0 H1
∗

112 122 0 H4
∗

113 122 0
H3

∗
114 123 0

115 123 0 H2
∗

116 125 0 H3
∗

117 125 0
H2

∗
118 126 0

119 126 0 H1
∗

120 129 0 H3
∗

121 129 0
H2

∗
122 130 0

123 130 0 H1
∗

124 132 0 H2
∗

125 132 0
H1

∗
126 133 0

127 133 0 H0
∗

128 140 13 H7
∗ G0

129 141 12 H6
∗ G1

130 142 12 H6
∗

G2131 143 11 H5
∗

132 145 11 H6
∗ G3
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